
Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 1 of 51

Optimization Challenge Problems
(2-D and Single OF)
R. Russell Rhinehart

Challenges for Optimizers:

This set of objective functions (OF) was created to provide sample challenges for testing optimizers. The
examples are all two-dimensional, having two decision variables (DV) so as to provide visual
understanding of the issues that they embody. Most are relatively simple to program and compute rather
simply, for user convenience. Most represent physically meaningful situations, for the person who wants
to see utility and relevance. All are presented with minimization as the objective. All DVs and OF values
are scaled on a 0 to 10 basis for common presentation.

Classic challenges to optimizers are objective functions that have:

1. non-quadratic behavior,
2. multiple optima,
3. stochastic responses,
4. asymptotic approach to optima at infinity,
5. hard inequality constraints, or infeasible regions,
6. slope discontinuities (sharp valleys),
7. a gently sagging channel (effectively slope discontinuities),
8. level discontinuities (cliffs),
9. flat spots,
10. nearly flat spots,
11. very thin global optimum in a large surface, pin-hole optima, improbable to find,
12. discrete, integer, or class DVs mixed with continuous variables,
13. underspecified problems with infinite number of equal solutions,
14. discontinuous response to seemingly continuous DVs because of discretization in a

numerical integration, and
15. Sensitivity of DV or OF solution to givens.

In all equations that follow, x1 and x2 are the DVs, and f_of_x is the OF value. The DVs are programmed
for the range [0, 10]. However, not all functions use DV values in that range. So, the DVs are scaled for
the appropriate range and labeled x11 and x22. The OF value f_of_x is similarly scaled for a [0, 10] range.
Any solution depends on the optimizer algorithm, the coefficients of the algorithm, and the convergence
criteria. For instance, a multi-player optimizer has an increased chance of finding the global optimum. An
ƻǇǘƛƳƛȊŜǊ ōŀǎŜŘ ƻƴ ŀ ǉǳŀŘǊŀǘƛŎ ǎǳǊŦŀŎŜ ŀǎǎǳƳǇǘƛƻƴ όǎǳŎƘ ŀǎ ǎǳŎŎŜǎǎƛǾŜ ǉǳŀŘǊŀǘƛŎ ƻǊ bŜǿǘƻƴΩǎύ ǿƛƭl jump
to the optimum when near it, but can jump in the wrong direction when not in the proximity. The values
for optimizer coefficients (scaling, switching, number of players, number of replicates, initial step size,
tempering or acceleration) can make an optimizer efficient for one application, but with the same values
it might be sluggish or divergent in an application with other features. The convergence criteria may be
right for one optimizer, but stop another long before arriving at an optimum. When you are exploring
optimizers, realize that the results are dependent on your choice of optimizer coefficients and
convergence criteria, as well as the optimizer and the features of the test function.

There are several metrics used to assess optimizer (and coefficient choice) performance. We desire to
have:

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 2 of 51

1. A minimum number of function evaluations (NOFE). Each function evaluation represents either
computer work, or experimental cost. Be sure to include either numerical or analytical
evaluations of gradients and Hessian elements in the NOFE. These derivative evaluations might
be a part of the optimizer, or they could be within a convergence criterion. Count them all.

2. Minimum computer time. Nominally, the OF evaluation is the most time consuming aspect, but
where the computer must sort through multiple players or apply convoluted logic, the optimizer
logic may take more time than the OF evaluation. When you accumulate optimizer time, be sure
to exclude unnecessary display I/O and the function evaluation time.

3. Maximum probability of finding the global optima. When there are multiple optima, traps,
diversions to a constraint, etc. the likelihood of any particular run of an optimizer in finding the
global is important. You many need 1000 or more runs from random initializations to be able to
assess the probability of an optimizer to find the global. Accuracy could be measured by the
probability that the optimizer identifies the global (converges in the vicinity of the global).

4. Precision. This is the closeness of the optimizer to the true optimum. The optimizers are
numerical procedures which also have finite convergence stopping criteria. They will not stop
exactly at the true optimum. Closeness to the optimum can be assessed either by the OF value
or by the DV value deviations from the true optimum. We talk about finding the global optimum,
but the reality is that the optimizer finds the proximity of an optima, not the exact point. Precision
could be measured by the rms (root-mean-square) deviation (either DV from DV*, or OF from
OF*) from those trials that located the global.

5. Robustness. This is a measure of the optimizer ability to cope with surface aberrations (cliffs, flat
spots, slope discontinuities, hard constraints, stochastic OF values, a trial solution that is infeasible
or cannot return an OF value). It also includes the optimizer ability to generate a next feasible
trial solution regardless of the surface features. Perhaps a measure of robustness could be the
fraction of times the optimizer can generate a feasible next trial solution.

6. Scalability. As the number of DVs increases, how does the computational time or storage
increase? How does the NOFE increase? How do the requirements on the user (such as the
number of user-chosen coefficient values that need to be specified for either the optimizer or the
convergence criteria) increase? The burden might be acceptable for low order applications, but
excessive for higher dimension ones. Do the diverse aspects rise linearly with DV dimension, as a
quadratic, or exponentially?

7. User understanding. How easy is it for the user to understand the optimizer logic and
computations? How easy is it for the user to establish confidence that the optimizer result is in
desired proximity of the global? User ability to adapt the code. Algorithm complexity.

Since any of these metrics will depend on the initial trial solution(s) and the surface features of a specific
objective function, you will need to run many trials and calculate an average value representing individual
functions. However, replicate trials from random initializations will not produce exact duplicate results.
For simple problems, perhaps 20 trials are fully adequate to have relatively certain values of the statistics.
However, you may need 100 to 10,000 trials to determine representative values for probability statistics
associated with other attributes. You should keep running trials until the standard deviation of the
statistic of interest is small enough to confidently differentiate between statistic values representing
different experimental conditions (optimizers, coefficients, convergence criteria). Statistical comparisons
need to be made on replicate results, such as a t-test of differences in NOFE. The Central Limit Theorem
reveals that the standard error of the average is inversely proportional to the square root of the number
of replicate trials.

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 3 of 51

CǳǊǘƘŜǊΣ ƻƴŜ ƻǇǘƛƳƛȊŜǊ όbŜǿǘƻƴΩǎΣ ǎǳŎŎŜǎǎƛǾŜ ǉǳŀŘǊŀǘƛŎύ ƳƛƎƘǘ ƧǳƳǇ ǘƻ ǘƘŜ ǎƻƭǳǘƛƻƴ ƛƴ ƻƴŜ ǎǘŜǇ ƛŦ ǘƘŜ
function is a simple quadratic response, but it might become hopelessly lost on a different function. How
do you compare optimizers? You need to choose a set of test functions that represent a diversity of
features.

Peaks (#30) ς This function seems to be a MatLAB creation as a simple representation of several
optimization issues. It provides mountains and valleys in the middle of a generally outward sloping
surface. There are two major valleys, and between the mountains, a small local minima. If the trial
solution starts on the North or East side of the mountains, it leads downhill to the North or East boundary.
The Southern valley has the lowest elevation. The surface is non-quadratic, and has multiple optima.
The function is:

x11 = 3 * (x1 - 5) / 5 'convert my 0-10 DVs to the -
3 to +3 range for the function
x22 = 3 * (x2 - 5) / 5
f_of_x = 3 * ((1 - x11) ^ 2) * Exp(-1 * x11 ^ 2 - (x22 +
1) ^ 2) - _
 10 * (x11 / 5 - x11 ^ 3 - x22 ^ 5) * Exp(-1 * x11
^ 2 - x22 ^ 2) - _
 (Exp(-1 * (x11 + 1) ^ 2 - x22 ^ 2)) / 3
f_of_x = (f_of_x + 6.75) / 1.5 Ψǘƻ ŎƻƴǾŜǊǘ ǘƻ ŀ л ǘƻ
10 f_of_x range

Shortest Time (#47) ς This simple appearing function is very
ŎƻƴŦƻǳƴŘƛƴƎ ŦƻǊ ǎǳŎŎŜǎǎƛǾŜ ǉǳŀŘǊŀǘƛŎ ƻǊ bŜǿǘƻƴΩǎ ŀǇǇǊƻŀŎƘŜǎΦ Lǘ
represents a simple situation of a person on land on one side of a
shallow river wanting to minimize the travel time to a point on
land on the other side. It is also kin to light traveling the minimum
time path through three media. Variables v1, v3, and v3 are the
velocities through the near side, water, and far side; and x1 and x2
represent the E-W distance that the path intersects the near side
and far side of the river.

v1 = 1
v2 = 0.75
v3 = 1.25
xa = 1
ya = 1
xb = 9
yb = 9
a1 = 3
b1 = -0.3
a2 = 5
b2 = 0.4
y1 = a1 + b1 * x1
y2 = a2 + b2 * x2
distance1 = Sqr((x1 - xa) ^ 2 + (y1 - ya) ^ 2)
distance2 = Sqr((x2 - x1) ^ 2 + (y2 - y1) ^ 2)

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 4 of 51

distance3 = Sqr((xb - x2) ^ 2 + (yb - y2) ^ 2)
timetravel = distance1 / v1 + distance2 / v2 + distance3 / v3
f_of_x = (timetravel - 12) * 10 / (32 - 12)

¢ƘŜ ǇǊƻōƭŜƳ ǎǘŀǘŜƳŜƴǘ ŦǊƻƳ нлмн ǿŀǎΥ ά{ƘŜ ǿŀǎ ǇƭŀȅƛƴƎ ƛƴ ǘƘŜ ǎŀƴŘȅ ŀǊŜŀ ŀŎǊƻǎǎ ǘƘŜ ǊƛǾŜǊ ŦǊƻƳ ƘŜǊ ƘƻǳǎŜ
when the dinner bell rang. To get home she needed to run across the sand, run through the shallow lazy
river, then run across the field to home. She runs faster on land than on sand. Both are faster than
running though the knee-deep water. What is the shortest-time path home? On the x-y space of her
world, she starts at location (1,1) and home is at (9,9). Perhaps the units are deci-kilometers (dKm) (tenths
of a kilometer). Her speed through water is 0.75 dKm/min, through sand is 1.0 dKm/min, and on land is
1.25 dKm/min. The boundaries of the river are defined by y = 3.0 - лΦоȄ ŀƴŘ ȅ Ґ рΦл Ҍ лΦпȄΦέ

Hose Winder (#46) ς This function presents discontinuities to the generally
well-behaved floor. It represents a storage box that winds up a garden hose
on a spool. When the winding hose gets to the end of the spool, it starts
back but at a spool diameter that is larger by two hose diameters. The
diameter jump causes the discontinuities. The objective is to design the
storage box size and handle length to mƛƴƛƳƛȊŜ ǘƘŜ ƻǿƴŜǊΩǎ ǿƻǊƪ ƛƴ ǿƛƴŘƛƴƎ
the hose.

¢ƘŜ нлмн ǇǊƻōƭŜƳ ǎǘŀǘŜƳŜƴǘ ǿŀǎΥ ά/ƻƴǎƛŘŜǊ ǘƘŀǘ ŀ ƘƻǎŜ ƛǎ нлл ŦŜŜǘ ƭƻƴƎΣ
and 1.25 inch in diameter, and is wound on a 6 inch diameter spindle by a gear connection to the handle.
The hose goes through a guide, which oscillates side-to-side to make the winding uniform. Each sweep of
the guide leads to a new hose layer, making the wind-on diameter 2.5 inches larger.

Originally the hose is stretched out 200 ft. To reel it in, the human must overcome the drag force of the
hose on the ground. Either a smaller spindle diameter or a larger handle radius reduces the handle force
required to reel in the hose. As the hose is reeled in, its residual length is less, and the drag force is less.
But, when the first spindle layer is full and the hose moves to the next layer, the leverage changes, and
the wind-up handle force jumps up.
After winding 200 ft. of hose, the human is exhausted. He had to overcome the internal friction of the
device, the hose drag resistance, and move his own body up and down. We wish to design a device that
that minimizes the total human work (handle force times distance moving the handle + body work). We
also wish to keep the maximum force on the handle less than some excessive value (so that an old man
can do the winding). If you increase the handle radius, the force is lessened, but the larger range of
motion means more body motion work. There is a constraint on the handle radius ς it cannot make the
ƘǳƳŀƴΩǎ ƪƴǳŎƪƭŜǎ ǎŎǊŀǇŜ ǘƘŜ ƎǊƻǳƴŘΦ

If you make the spindle length longer, so that more hose is wound on each layer, then the hose wind-on
diameter does not get as large, and the handle needs less force to counter the drag. But, more turns to
wind-in the hose means more body motion.

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 5 of 51

Further, consider the economics of manufacturing the box. The box volume needs to be large enough to
windup the hose on the spindle, and perhaps 20% larger (so that spiders can find space for their webs, I
think). Use 5 cuft. If the side is square, then defining the
length and volume sets the side dimensions. Setting the
weight and cost directly proportional to the surface area, the
spindle length defines the cost of manufacturing and shipping.
The objective function is comprised of a penalty for the
maximum force, a penalty for the cost, and a penalty for the
wind-ǳǇ ǿƻǊƪΦέ

The 3-D view indicates a generally smooth approach to a
minimum, but with local wrinkles on the surface. The local
valleys guide many optimizers to a false minimum.

The VBA code is:

If x1 <= 0 Or x2 <= 0 Then
 constraint = "FAIL"
 f_of_x = 15
 Exit Function
End If
' HandleRadius = x1 / 4 'nominal, scales 0-10 to 0-2.5 ft
' BoxWidth = x2 / 2 'nominal, scales 0-10 to 0-5 ft
HandleRadius = 1.8 + 0.04 * x1 'to focus on discontinuties'
BoxWidth = 0.6 + 0.02 * x2 'to focus on discontinuities
WindRadius = 0.25 'spindle radius 3 inches as 1/4 ft
BoxVolume = 5 'cuft
BoxSide = Sqr(BoxVolume / BoxWidth)
If HandleRadius > 0.85 * BoxSide Then
 constraint = "FAIL"
 f_of_x = 15
 Exit Function
End If
Area = 2 * BoxSide ^ 2 + 3 * BoxWidth * BoxSide 'no bottom closure
HoseLength = 200 'ft
HoseDiameter = 0.1 '1.25 inches = 0.1 ft
DragLength = HoseLength
dcircle = 0.025 'fraction of circumfrence
work = 0
WindLength = 0
Fmax = 0
Do Until DragLength < 2 'enough increments to wind up hose, leave 2 feet of hose outside
winder
 DragForce = 0.2 * DragLength '0.2 is coefficient of friction lbf/ft of hose
 HandleForce = (DragForce * WindRadius + 0.5) / HandleRadius + 1 'hose drag, torque to spin
assembly, body motion
 If HandleForce > Fmax Then Fmax = HandleForce
 dwork = HandleForce * HandleRadius * 2 * 3.14159 * dcircle
 work = work + dwork

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 6 of 51

 dlength = WindRadius * 2 * 3.14159 * dcircle 'incremental length wound in one circle
increment
 WindLength = WindLength + dlength 'total length wound on the layer
 DragLength = DragLength - dlength 'length of hose left unwoound
 If WindLength > (BoxWidth / HoseDiameter) * 2 * 3.14159 * WindRadius Then 'layer full,
move to next
 WindRadius = WindRadius + HoseDiameter 'update winding radius
 WindLength = 0 'reset wound length on new layer
 End If
Loop
' f_of_x = 10 * ((Fmax / 5) ^ 2 + (Area / 20) ^ 2 + (work / 1000) ^ 2 - 28) / (70 - 28) 'nominal
f_of_x = 10 * ((Fmax / 5) ^ 2 + (Area / 20) ^ 2 + (work / 1000) ^ 2 - 28.25) / (28.45 - 28.25) 'to focus
on discontinuities

Boot Print in the Snow (#19) ς This represents a water reservoir
design problem, but with very simple equations. The objectives
of a reservoir are to trap excessive rain water to prevent
downstream floods, to release water downstream to
compensate for upstream droughts, and to provide water for
human recreational and security needs. We also want to
minimize the cost of the dam and land. The questions are how
tall should the dam be and how full should the reservoir be kept.
The taller it is, the more it costs; but the lower will be the
probability of flood or drought impact, and the better the
recreational and security features. The fuller it is kept the less it
can absorb floods, but the better the drought or recreational
performance. On the other hand if kept nearly empty it can
mitigate any flood, but cannot provide recreation or drought
protection. The contour appears as a boot print in the snow. The
contours represent the economic risk (probability of an event times the cost of the event). The minimum
is at the toe. The horizontal axis, x1, represents the dam height. The vertical axis, x2, is the setpoint
portion of full.

A feature of this application that creates difficulty is that the bottom of the print is a plane, and
optimization algorithms that use a quadratic model (or second derivatives) cannot cope with the zero
values of the second derivative.

The VBA code is:
 If x1 < 0 Or x2 < 0 Or x1 > 10 Or x2 > 10 Then

constraint = "FAIL"
Exit Function

 End If
 x1line = 1 + 0.2 * (x2 - 4) ^ 2
 deviation = (x1line - x1)
 penalty = 5 * (1 / (1 + Exp(-3 * deviation))) 'logistic functionality
 f_of_x = 0.5 * x1 - 0.2 * x2 + penalty + add_noise
 f_of_x = 10 * (f_of_x - 0.3) / 6

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 7 of 51

Boot Print with Pinhole (#22) ς This is the same as Boot
Print in the Snow, but the global minimum is entered with
a small region on the level snow. Perhaps an acorn fell
from a high tree and drilled a hole in the snow. The
difficulty is that there is a small probability of starting in
the region that would attract the solution to the true
global. Nearly everywhere, the trial solution will be
attracted to the toe part of the boot print.

The VBA Code is:
 If x1 < 0 Or x2 < 0 Or x1 > 10 Or x2 > 10 Then

constraint = "FAIL"
Exit Function

 End If
 x1line = 1 + 0.2 * (x2 - 4) ^ 2
 deviation = (x1line - x1)
 penalty = 5 * (1 / (1 + Exp(-3 * deviation))) 'logistic functionality
 f_of_x = 0.5 * x1 - 0.2 * x2 + penalty + add_noise
 x1mc2 = (x1 - 1.5) ^ 2
 x2mc2 = (x2 - 8.5) ^ 2
 factor = 1 + (5 * (x1mc2 + x2mc2) - 2) * Exp(-4 * (x1mc2 + x2mc2))
 f_of_x = factor * f_of_x + add_noise
 f_of_x = 10 * (f_of_x - 0.3) / 6

Stochastic Boot Print (#20) ς This represents the same
water reservoir design problem as Boot Print in the Snow;
however, the surface is stochastic. The OF value depends on
a probability of the flood or draught event. Because of this
each realization of the contour will yield a slightly different
appearance. One realization of the 3-D view is shown. Note
that starting in the middle of the DV space on the planar
portion, a down-hill optimizer will progressively move
toward the far side of the illustration where the spikes are.
In that region of a small reservoir kept too full or too empty,
there is a probability of encountering a costly flood or
draught event that the reservoir cannot mitigate. Moving in
the down-hill direction the optimizer may, or may not, encounter a costly event. If it does not, it continues
to place trial solutions into a region with a high probability of a disastrous event, and continues into the
bad region as the vagaries of probability generate fortuitous appearing OF values.

The VBA code is:
 If x1 < 0 Or x2 < 0 Or x1 > 10 Or x2 > 10 Then

constraint = "FAIL"
Exit Function

 End If
 x1line = 2 + 0.2 * (x2 - 4) ^ 2
 penalty = 0

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 8 of 51

 deviation = (x1line - x1)
 probability = 1 / (1 + Exp(-1 * deviation)) 'logistic functionality
 If probability > Rnd() Then penalty = 5 * probability
 f_of_x = 0.5 * x1 - 0.2 * x2 + penalty + add_noise
 f_of_x = 10 * (f_of_x + 1.25) / 7.25

Two realizations of the contour are shown here and reveal the stochastic nature of the surface, the non-
repeatability of the OF value. Now, in addition to the difficulty of the planar midsection, the optimizer
also faces a stochastic surface that could lead to a fortuitous minimum in a high risk section of too small
a dam (x-axis) or keeping the reservoir too full or empty (y-axis).

Reservoir (#18) ς This is the basis for Stochastic Boot
Print, but it is a computationally time-consuming Monte
Carlo simulation of a water reservoir. Reservoir capacity
and nominal level are the decision variables.

The larger the reservoir, the greater the initial cost. Cost
is the objective function. So, superficially, build a small
dam and have a small reservoir to reduce cost.
However, if the reservoir is too small, and/or it is
maintained nearly full, it does not have enough capacity
to absorb an up-stream flood due to exceptionally heavy
rainfall, and it will transmit the flood down-stream.
Down-stream flooding incurs a cost of damaged
property. But, the chance of a flood, and the magnitude of the flood depend on the up-stream rainfall.
So, the simulator models a day-to-day status with a log-normal rainfall distribution for a time-period of 20
years. (You can change the simulated time, or rain fall distribution.)

On the other side of flooding conditions are drought conditions. If the reservoir is too small, and/or
maintained with little reserve of water, an upstream drought will require stopping the water release,
which stops down-stream river flow. Down-stream dwellers, recreationists, or water users will not like
this. There is also a cost related to zero down-stream flow.

There is a fixed cost of the structure, and a probabilistic or stochastic cost of extreme flood or draught
events.

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 9 of 51

Since one 20-ȅŜŀǊ ǎƛƳǳƭŀǘƛƻƴ ǿƛƭƭ ƴƻǘ ǊŜǾŜŀƭ ǘƘŜ ŎƻƴŦƭǳŜƴŎŜ ƻŦ άмлл-ȅŜŀǊ ŜǾŜƴǘǎέΣ ǘƘŜ ǎƛƳǳƭŀǘƻǊ Ǌǳƴǎ рл
reservoirs for 20 years each ς 50 realizations of the 20-year period. You can change the number of
realizations.

The function is set-up to return either the maximum cost for the 50 realizations, or the estimated 99%
probable upper limit on the cost. You could choose another performance indicator.

An excessively large reservoir kept half full will have ample reserve (to keep water flowing in a drought)
and open capacity (to absorb excess rainfall and prevent down-stream flooding), but it will cost a lot. A
smaller reservoir will have less cost. But, too small a reservoir will not prevent problems with drought or
flood. So, there is an in between optimum size.

If the nominal volume is near the full mark, then the reservoir will not be able to absorb floods, but it will
have plenty of capacity for a drought. If the nominal level is too low, it will be able to prevent a flood, but
not keep water flowing for a drought event. So, there is also an in between setpoint capacity that is best.
The optimum setpoint for the level might not be at 50%. It depends on whether the vagaries of rainfall
make floods a bigger event than droughts.

For any given sized reservoir, the fuller it is kept the greater is the fresh water reserve and recreational
area. So, other benefits are added as a negative penalty to the cost.

There is a fixed cost of the structure, a probabilistic or stochastic cost of extreme events, and a negative
penalty for reserve and recreation benefits.

The figure is rotated to provide a good view of the surface. The optimum is in the upper left of the figure.
The lower axis is x2, the water level nominal setpoint for the reservoir. At zero the reservoir is empty, at
10 it is completely full. The nearly vertical axis on the right is the reservoir size, zero is a nonexistent
reservoir, 10 is large.

Similar to Stochastic Boot Print, this function presents optimizer difficulties of the planar midsection and
a stochastic surface that could lead to a fortuitous minimum in a high risk section of too small a dam (x-
axis) or keeping the reservoir too full or empty (y-axis). It is a more realistic Monte Carlo simulation than
Stochastic Boot Print, but takes longer to compute, and provides the same issues for an optimizer as
Stochastic Boot Print.

The VBA code is:
 twoPi = 2 * 3.1415926535
 inchavg = 0.4 'average inches of rainfall/event
 prain = 0.25 'daily probability of rain
 sy = Log(5 / inchavg) / 1.96 'sigma for log-normal distribution
 Qinavg = prain * inchavg * 2.54 * 10 ^ 6 'average water volume collected/day
 Useravg = 0.4 * Qinavg 'average daily water demand by users
 Qoutavg = Qinavg - Useravg 'average excess water/day released downstream
 Vc = (100 + x1 * 100) * 0.25 * inchavg * 2.54 * 10 ^ 6 'reservoir capacity, from scaled DV x1
 If Vc < 0 Then Vc = 0
 Vset = (0.3 + 0.65 * x2 / 10) * Vc 'reservoir setpoint from scaled DV x2
 Vmin = 0.3 * Vc 'Minimum residual capacity in reservoir, a constraint
 inchflood = 12 'rain fall amount at one time that causes a flood downstream

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 10 of 51

 Qflood = inchflood * 2.54 * 10 ^ 6 'volume of water/day associated with the flood rain
 v = Vset 'initialize simulation with water at the setpoiny
 TotalDays = 1 * 365 'simulation period in days
 NRealizations = 10 'number of realizations simulated
 MaxCost = 0 'initialize total cost for any realization
 For Realization = 1 To NRealizations
 Cost(Realization) = 0.0001 * Vc ^ 0.6 'cost of initial reservoir
 For Daynum = 1 To TotalDays
 If Rnd() > 0.25 Then 'does it rain?
 inches = 0 'if no
 Else
 inches = inchavg * Exp(sy * Sqr(-2 * Log(Rnd())) * Sin(twoPi * Rnd()))
 If inches > 25 Then inches = 25 'log-normal occasionally returns some excessive numbers.
maybe rainfall is not log-normally distributed
 End If
 Qin = inches * 2.54 * 10 ^ 6 'incoming water volume due to rain - level times area
 If v <= Vmin Then Qout = 0 'control logic for water release
 If Vmin < v And v <= Vset Then Qout = Qoutavg * (v - Vmin) / (Vset - Vmin)
 If Vset < v And v <= Vc Then Qout = Qoutavg + (v - Vset) * (Qflood - Qoutavg) / (Vc - Vset)
 vnew = v + Qin - Qout - Useravg 'reservoir volume after a day if Qout as calculated
 If vnew > Vc Then 'override if reservoir volume would exceed capacity
 Qout = Qin - Useravg - (Vc - v)
 vnew = Vc
 End If
 If vnew < Vmin Then 'override if reservoir volume would fall lower than Vmin
 Qout = v - Vmin + Qin - Useravg
 If Qout < 0 Then Qout = 0
 vnew = v + Qin - Qout - Useravg
 End If
 v = vnew
 If Qout > Qflood Then 'cost accumulation if a flood event
 discount = (1 + 0.03) ^ Int(Daynum / 365) 'discount factor
 Cost(Realization) = Cost(Realization) + (0.1 * ((Qout - Qflood) / 10 ^ 6) ^ 2) / discount
 End If
 If Qout = 0 Then 'cost accumulation if a drought event
 discount = (1 + 0.03) ^ Int(Daynum / 365)
 Cost(Realization) = Cost(Realization) + 1 / discount
 End If
 Next Daynum
 If Cost(Realization) > MaxCost Then MaxCost = Cost(Realization)
 Next Realization
 costsum = 0 'determine average cost per realizaton
 For Realization = 1 To NRealizations
 costsum = costsum + Cost(Realization)
 Next Realization
 AvgCost = costsum / NRealizations
 cost2sum = 0 'determine variance of realization-to-relaization cost
 For Realization = 1 To NRealizations

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 11 of 51

 cost2sum = cost2sum + (Cost(Realization) - AvgCost) ^ 2
 Next Realization
 SigmaCost = Sqr(cost2sum / (NRealizations - 1))
 f_of_x = AvgCost + 3 * SigmaCost 'Primary OF is 3-sigma, 99.73 probable upper limit
 f_of_x = f_of_x - 0.2 * x2 'Secondary OF adds a benefit (negative penalty) for high setpoint level
 f_of_x = 10 * (Sqr(f_of_x) - 2) / (15 - 4) + add_noise 'scale factor for display convenience
' f_of_x = MaxCost - 0.2 * x2 - 4 'OF based on max cost for the several realizations
 If Vset < Vmin Or Vset > 0.95 * Vc Or Vc <= 0 Then 'hard constraint
 constraint = "FAIL"
 End If

/ƘƻƴƎ ±ǳΩǎ bƻǊƳŀƭ wŜƎǊŜǎǎƛƻƴ (#11) ς Chong Vu was a student
exploring various regression objective functions as part of the
Optimization Applications course, and created this test
problem for a best linear relation to fit 5 data points
representing contrived noisy data. The points are (0,1), (0,2),
(1,3), (1,1), and (2,2). X1 and x2 are scaled to represent the
slope and intercept of the linear model. The OF value is
computed as the sum of squared normal distances from the line
to the data (as opposed to the traditional vertical deviation
least squares that assumes variability in the y-measurement
only).

The minimum is at about x1=8, x2=2 in the near valley. The function is relatively well behaved, and even
though it represents a sum of squared deviations, it is not a quadratic shape. Further, trial solutions in
the far portion of the valley send the solution toward infinity (x1=-қΣ ȄнҐҌқύΦ

The VBA Code is:
 m11 = 0.5 * x1 - 3 'coefficients adjusted to fit better on x1, x2 display scale
 b11 = 0.3 * x2 + 0.5
 Sum = 0
 Sum = Sum + (1 - m11 * 0 - b11) ^ 2 'first of 5 pairs of x,y data y=1, x=0
 Sum = Sum + (2 - m11 * 0 - b11) ^ 2
 Sum = Sum + (3 - m11 * 1 - b11) ^ 2
 Sum = Sum + (1 - m11 * 1 - b11) ^ 2
 Sum = Sum + (2 - m11 * 2 - b11) ^ 2
 f_of_x = Sum / (1 + m11 ^ 2) - 2 'sum of vertical distance squared converted to normal d^2
Ψ ŦψƻŦψȄ Ґ лΦс ϝ (f_of_x - 1 + 0.02 * (x1 - x2 + 3) ^ 2) 'OF adjusted for display appearance and to keep
solution in bounds
 If x1 < 0 Or x2 > 10 Then constraint = "FAIL" 'there is an off-graph attractor seems to be at -
infinity, + infinity

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 12 of 51

Windblown (#61) ς A person wants to travel from Point
A to Point B, and chooses two linear paths from A to Point
C then C to B so that the cumulative impact of the wind
is minimized. Perhaps he is not wearing his motorcycle
ƘŜƭƳŜǘΣ ŀƴŘ ŘƻŜǎƴΩǘ ǿŀƴǘ Ƙƛǎ ƘŀƛǊ ǘƻ ƎŜǘ ƳŜssed up. The
DVs are the x1 and x2 coordinates for point C. The wind
blows in a constant (not stochastic) manner, but the wind
velocity and direction change with location. The travel
velocity is constant. If point C is out of the high windy
area, but far away, the travel time is high and the low
wind experience persists for a long time. If point C is on
the line between A and B, representing the shortest
distance path, and lowest time path, it takes the traveler
into the high wind area, and even though the time is minimized, the cumulative wind damage is high. The
impact is due to the square of the difference of the wind and travel velocity. Moving at 25 mph in the
same direction as a 25 mph wind is blowing is like being in calm air. But, traveling in the opposite direction
is like standing in a 50 mph wind. The objective is to minimize the cumulative impact, the integral of the
squared velocity difference along the A-C-B path.

The function provides some discontinuities as evidenced by the kinks in the contours. And, there are two
minima, the global is to the front-left of the lower contour, and the secondary is to the back right. Both
minima are in relatively flat spots.

Suresh Kumar Jayaraman helped me explore this simulation of a path integral. The VBA code is:
 xc = x1 'Optimizer chooses point C
 yc = x2
 xa = 2 'User defines points A and B
 ya = 4
 xb = 9
 yb = 6
 N = 200 'Discretization number of intervals
 velocity = 1.5 'Velocity of traveller
 wind_coefficient = 0.1 'Coefficient for velocity of wind
 'from A to C
 xi = xa 'xi and yi are locations along the path
 yi = ya
 D1 = Sqr((xa - xc) ^ 2 + (ya - yc) ^ 2) 'total path distance
 dD1 = D1 / N 'path incremental length
 time_interval = dD1 / velocity 'travel time along path increment
 dxi1 = (xc - xa) / N 'incremental x increments
 dyi1 = (yc - ya) / N 'incremental y increments
 If xc = xa Then
 vx = 0 'traveler x velocity
 Else
 vx = velocity * (1 + ((yc - ya) / (xc - xa)) ^ 2) ^ -0.5
 End If
 If yc = ya Then
 vy = 0 'traveler y velocity

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 13 of 51

 Else
 vy = velocity * (((xc - xa) / (yc - ya)) ^ 2 + 1) ^ -0.5
 End If
 im1 = 0 'integral of impact on path 1
 For Path_Step = 1 To N
 If D1 = 0 Then Exit For
 xi = xi + dxi1
 yi = yi + dyi1
 wx = (-wind_coefficient * xi ^ 2 * yi) / Sqr((xi + 0.1) ^ 2 + (yi + 0.1) ^ 2)
 wy = (wind_coefficient * xi * yi ^ 2) / Sqr((xi + 0.1) ^ 2 + (yi + 0.1) ^ 2)
 lim = Sqr((vx - wx) ^ 2 + (vy - wy) ^ 2)
 im1 = im1 + lim
 Next Path_Step
 im1 = im1 * time_interval 'total impact scaled by time
 'from C to B
 xi = xc
 yi = yc
 D2 = Sqr((xc - xb) ^ 2 + (yc - yb) ^ 2)
 dD2 = D2 / N
 time_interval = dD2 / velocity
 dxi2 = (xb - xc) / N
 dyi2 = (yb - yc) / N
 If xc = xb Then
 vx = 0
 Else
 vx = velocity * (1 + ((yb - yc) / (xb - xc)) ^ 2) ^ -0.5
 End If
 If yc = yb Then
 vy = 0
 Else
 vy = velocity * (((xb - xc) / (yb - yc)) ^ 2 + 1) ^ -0.5
 End If
 im2 = 0
 For Path_Step = 1 To N
 If D2 = 0 Then Exit For
 xi = xi + dxi2
 yi = yi + dyi2
 wx = (-wind_coefficient * xi ^ 2 * yi) / Sqr((xi + 0.1) ^ 2 + (yi + 0.1) ^ 2)
 wy = (wind_coefficient * xi * yi ^ 2) / Sqr((xi + 0.1) ^ 2 + (yi + 0.1) ^ 2)
 lim = Sqr((vx - wx) ^ 2 + (vy - wy) ^ 2)
 im2 = im2 + lim
 Next Path_Step
 im2 = im2 * time_interval
 f_of_x = im1 + im2
 f_of_x = 10 * (f_of_x - 18) / (35 - 18)
 f_of_x = f_of_x + add_noise

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 14 of 51

Integer Problem (#33) ς This simple example represents
a classic manufacturing application. Minimize a function
(perhaps maximize profit) of DVs x1 and x2 (perhaps the
number of items of products A and B to make), subject to
constraints (perhaps on capacity), and requiring x1 and x2
to be integers (you can only sell whole units).

There are many similar examples in textbooks.

The attributes of such applications are the level
discontinuities (cliffs) as the integer value changes, and
the flat spots over the range of DV values that generate
the same integer value. The surface is nonanalytic ς
derivatives are either zero or infinity. This illustration illustrates the constraint regions with a high OF
value.

The VBA Code is:
 x11 = Int(x1)
 x22 = Int(x2)
 f_of_x = 11 - (4 * x11 + 7 * x22) / 10
 If 3 * x11 + 4 * x22 > 36 Then constraint = "FAIL"
 If x11 + 8 * x22 > 49 Then constraint = "FAIL"

Reliability (#56) ς ¢Ƙƛǎ ŀǇǇƭƛŎŀǘƛƻƴ ǊŜǇǊŜǎŜƴǘǎ ŀ ŘŜǎƛƎƴŜǊΩǎ
choice of the number and size of parallel items for system
success. Consider a bank of exhaust fans needed to keep
building air refreshed, as I had to when I worked in industry.
The fans are operating in parallel. If one fails, air quality
deteriorates. If there are 3 operating fans and one spare;
when one fails, the spare can be placed online. This
increases reliability of the operation, but increases the cost
of the fan assembly by 4/3. Even so, reliability is not perfect.
There is a chance that two fans will fail, or three. Perhaps
have three spares. Now, the cost is 6/3 of the original fan
station. In either case, the cost needs to be balanced by the probability of the fan bank not handling the
load. Alternately, it could be balanced by risk (the financial penalty of an event, times the probability that
an event will happen).

A clever cost reduction option is to use smaller capacity items, but more of them. For example, if there
are 4 operating fans, each only has to have ¾ of the capacity of the original three. Using the common
6/10ths power law for device cost, the smaller fans each cost (3/4)0.6 of the original three, but there are 4
of them. So, the cost of the zero-spare situation with 4 smaller fans is higher than the cost of the 3 larger
fans. The ratio is 4* (3/4)0.6 /3 = 1.12. However, if three spares are adequate, the cost of 7 smaller fans
is lower than the cost of 6 larger fans. The ratio is 7* (3/4)0.6 /6 = 0.98.

The optimization objective is to determine the number of operating units and the number of spare units
to minimize cost with a constraint that the system reliability must be greater than 99.99%.

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 15 of 51

The realizable values of the DVs must be integers. This creates flat surfaces with cliff discontinuities
(derivatives are either zero or infinity), and the constraint creates infeasible DV sets.

The VBA Code is:
 N = 3 + Int(8 * x1 / 10 + 0.5) 'total number of components
 M = Int(5 * x2 / 10 + 0.5) 'number of operating components needed to meet capacity
 p = 0.2 'probability of any one component failing
 q = 1 - p 'probability of any one component working
 If M > N Then
 f_of_x = 0
 constraint = "FAIL"
 Exit Function
 End If
 If M > 0 Then
 f_of_x = N * (1 / M) ^ 0.6
 Else
 f_of_x = 0
 constraint = "FAIL"
 Exit Function
 End If
 P_System_Success = 0
 For im = 0 To N - M
 P_System_Success = P_System_Success + (factorial(N) / (factorial(im) * factorial(N - im))) * (p ^ im) *
(q ^ (N - im))
 Next im
 If P_System_Success < 0.999 Then
 f_of_x = 0
 constraint = "FAIL"
 Exit Function
 End If

The factorial function is:
 factorial = 1
 If NUM = 1 Or NUM = 0 Then Exit Function
 For iNUM = 2 To NUM
 factorial = factorial * iNUM
 Next iNUM

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 16 of 51

Frog (#2) ς I generated this function as a final project for a
freshman-level computer programming class when I was a PhD
candidate at NCSU. It included nested loops and conditionals
to assign text symbols to array variables, then printing the
array. Students would know when they have the right answer!
The eyes represent equal global optima. There are also three
minima in the mouth. To add difficulty for an optimizer, there
is an oval constraint, a forbidden area, surrounding the eye in
the upper left. Down-hill type optimizers get stuck on the
constraint northwest of the eye. The face is also relatively flat
tricking some convergence criteria to stop early.

The VBA Code is:
f_of_x = 2 + 1 * (((x1 - 5) ^ 2) + ((x2 - 5) ^ 2)) * (0.5 - Exp((-((x1 - 3.5) ^ 2)) - _
 ((x2 - 7) ^ 2))) * (0.5 - Exp((-((x1 - 6.5) ^ 2)) - _
 ((x2 - 7) ^ 2))) * (0.5 + (Abs(Sqr(((x1 - 5) ^ 2) / ((x2 - 11) ^ 2)))) - _
 (Exp(-(Sqr(((x1 - 5) ^ 2) + ((x2 - 11) ^ 2)) - 7) ^ 2)))
If (x1 - 3.5) ^ 2 + (x2 - 7) ^ 4 <= 2 Then
 constraint = "FAIL" 'Hard constraint approach
Else
 constraint = "OK"
End If

Hot and Cold Mixing (#36) ς This function represents the
control action required to meet steady-state mixed
temperature and flow rate targets of 70 C and 20 kg/min from
the current conditions of 35C and 8 kg/min. The DVs are the
signals to the hot and cold valves.

Hot and cold fluid are mixed in line, and the objective is to
determine the hot and cold flow control valve positions, o1
and o2, to produce the desired mixed temperature and total
flow rate. The valves have a parabolic inherent characteristic,
and identical flow rate vs. valve position response. The
control algorithm is the Generic Model Control (GMC) law with a steady-state model, and the desire to
target for 20% beyond the biased setpoint, Kc=1.2. There is uncertainty on the model parameters of the
supply temperatures, measured flow rate and temperature, and valve Cv. The controller objective is to
determine o1 and o2 values that minimize the equal-concern weighted deviations from target at steady-
state.

ὐ

The first term in the OF relates to the temperature deviation, and the second term the flow rate deviation.
The deviations are weighted by the equal-concern factors, ET and EF. The numerator of each term starts

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 17 of 51

with the calculated target value (beyond the setpoint), and subtracts from it the modeled value. The OF
is the equal-concern-weighted, sum of squared deviations.

The VBA code is:
If x1 <= 0 Or x1 > 10 Or x2 <= 0 Or x2 > 10 Then
 constraint = "FAIL"
 Exit Function
 End If
 o1 = 10 * x1 'hot valve position, %
 o2 = 10 * x2 'cold valve position, %
 SetpointT = 70 'Celsius
 add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
 FromT = 35 * (1 + add_noise) 'Celsius
 SetpointF = 20 'm^3/min
 add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
 FromF = 8 * (1 + add_noise) 'm^3/min
 add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
 HotTin = 80 * (1 + add_noise) 'Celsius
 add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
 ColdTin = 20 * (1 + add_noise) 'Celsius
 add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
 ValveCv = 0.0036 * (1 + add_noise) 'm^3/min/%^2
 EC4T = 0.15 'Celsius^(-2)
 EC4F = 1 '(m^3/min)^(-2)
 f_of_x = EC4T * (1.2 * (SetpointT - FromT) + FromT - (HotTin * o1 ^ 2 + ColdTin * o2 ^ 2) / (o1 ^ 2 + o2 ^
2)) ^ 2 + EC4F * (1.2 * (SetpointF - FromF) + FromF - ValveCv * (o1 ^ 2 + o2 ^ 2)) ^ 2
 f_of_x = f_of_x / 150

This is a simple function, but provides substantial misdirection to a steepest descent optimizer that starts
in the far side. It has steep walls, but a low slope at the proximity of the minimum. Some optimizers
starting in the proximity of the optimum do not make large enough DV changes, and convergence criteria
can stop them where they start.

With no uncertainty on model values, the contour of the 2-D search or o1 and o2 appears as the left figure
below, which is interesting enough as a test case for nonlinear optimization. However, with a 5% nominal
uncertainty, the center figure, the contours are obviously irregular, and the 3-D plot of OF vs. DVs, the
right hand figure, reveals the irregular surface.

Optimization Applications 2016-05-17 R. Russell Rhinehart

Page 18 of 51

Curved Sharp Valleys (#8) ς This is a contrivance to provide a
simple function with a slope discontinuity at the global
minimum (in the valley near the lower right of the figure, but
in the interior, at about the point x1=8, x2=3). At the
minimum the slope of the valley floor is low compared to the
side walls. This means that from any point in the bottom of
the valley there is only a small directional angle to move to a
lower spot. Nearly all directions point up hill. Also the valley
is curved, so that once the right direction is found, it is not the
right direction for the next moveΦ aƻǎǘ ƻǇǘƛƳƛȊŜǊǎ ǿƛƭƭ άǘƘƛƴƪέ
they have converged when they are in the steep valley, and
multiple runs will lead to multiple ending points that trace the valley bottom. The surface has another
minimum in a valley in the upper right, and a well behaved local minimum up on the hill in the far right.
Both the Parameter Correlation and the ARMA Regression function have a similar feature. This
exaggerates it, and has a very simple formulation.

The VBA Code is:
 f_of_x = 0.015 * (((x1 - 8) ^ 2 + (x2 - 6) ̂ 2) + _
 15 * Abs((x1 - 2 - 0.001 * x2 ^ 3) * (x2 - 4 + 0.001 * x1 ^ 3)) - _
 500 * Exp(-((x1 - 9) ^ 2 + (x2 - 9) ^ 2)))

Parallel Pumps (#41) ς This represents a redundancy design
ŀǇǇƭƛŎŀǘƛƻƴ ŦǊƻƳ ŀ нлмм ŀǎǎƛƎƴƳŜƴǘ ǿƻǊŘŜŘ ŀǎ ά! ŎƻƳǇŀƴȅ
has three identical centrifugal pumps in parallel in a single
process stream. The pumps run at a constant impeller
speed. They wish to have a method that chooses how many
pumps should be operating, and what flow rate should go
through each operating pump to minimize energy
consumption for a given total flow rate. The inlet and outlet
pressures on the overall system of pumps remain a
constant, but not on each individual pump. The individual
flow rates out of each pump are controlled by a flow control
valve.

