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Optimization Challenge Problems  
(2-D and Single OF)  
R. Russell Rhinehart 

 
 
Challenges for Optimizers: 
 
This set of objective functions (OF) was created to provide sample challenges for testing optimizers.  The 
examples are all two-dimensional, having two decision variables (DV) so as to provide visual 
understanding of the issues that they embody.  Most are relatively simple to program and compute rather 
simply, for user convenience.  Most represent physically meaningful situations, for the person who wants 
to see utility and relevance.  All are presented with minimization as the objective.  All DVs and OF values 
are scaled on a 0 to 10 basis for common presentation. 
 
Classic challenges to optimizers are objective functions that have:  

1. non-quadratic behavior,  
2. multiple optima,  
3. stochastic responses, 
4. asymptotic approach to optima at infinity, 
5. hard inequality constraints, or infeasible regions, 
6. slope discontinuities (sharp valleys), 
7. a gently sagging channel (effectively slope discontinuities), 
8. level discontinuities (cliffs), 
9. flat spots, 
10. nearly flat spots, 
11. very thin global optimum in a large surface, pin-hole optima, improbable to find, 
12. discrete, integer, or class DVs mixed with continuous variables, 
13. underspecified problems with infinite number of equal solutions, 
14. discontinuous response to seemingly continuous DVs because of discretization in a 

numerical integration, and 
15. Sensitivity of DV or OF solution to givens. 

 
In all equations that follow, x1 and x2 are the DVs, and f_of_x is the OF value.  The DVs are programmed 
for the range [0, 10].  However, not all functions use DV values in that range.  So, the DVs are scaled for 
the appropriate range and labeled x11 and x22.  The OF value f_of_x is similarly scaled for a [0, 10] range. 
Any solution depends on the optimizer algorithm, the coefficients of the algorithm, and the convergence 
criteria.  For instance, a multi-player optimizer has an increased chance of finding the global optimum.  An 
ƻǇǘƛƳƛȊŜǊ ōŀǎŜŘ ƻƴ ŀ ǉǳŀŘǊŀǘƛŎ ǎǳǊŦŀŎŜ ŀǎǎǳƳǇǘƛƻƴ όǎǳŎƘ ŀǎ ǎǳŎŎŜǎǎƛǾŜ ǉǳŀŘǊŀǘƛŎ ƻǊ bŜǿǘƻƴΩǎύ ǿƛƭl jump 
to the optimum when near it, but can jump in the wrong direction when not in the proximity.  The values 
for optimizer coefficients (scaling, switching, number of players, number of replicates, initial step size, 
tempering or acceleration) can make an optimizer efficient for one application, but with the same values 
it might be sluggish or divergent in an application with other features.  The convergence criteria may be 
right for one optimizer, but stop another long before arriving at an optimum.  When you are exploring 
optimizers, realize that the results are dependent on your choice of optimizer coefficients and 
convergence criteria, as well as the optimizer and the features of the test function. 
 
There are several metrics used to assess optimizer (and coefficient choice) performance.  We desire to 
have:  
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1. A minimum number of function evaluations (NOFE).  Each function evaluation represents either 
computer work, or experimental cost.  Be sure to include either numerical or analytical 
evaluations of gradients and Hessian elements in the NOFE.  These derivative evaluations might 
be a part of the optimizer, or they could be within a convergence criterion.  Count them all. 

2. Minimum computer time.  Nominally, the OF evaluation is the most time consuming aspect, but 
where the computer must sort through multiple players or apply convoluted logic, the optimizer 
logic may take more time than the OF evaluation.  When you accumulate optimizer time, be sure 
to exclude unnecessary display I/O and the function evaluation time. 

3. Maximum probability of finding the global optima.  When there are multiple optima, traps, 
diversions to a constraint, etc. the likelihood of any particular run of an optimizer in finding the 
global is important.  You many need 1000 or more runs from random initializations to be able to 
assess the probability of an optimizer to find the global.  Accuracy could be measured by the 
probability that the optimizer identifies the global (converges in the vicinity of the global). 

4. Precision.  This is the closeness of the optimizer to the true optimum.  The optimizers are 
numerical procedures which also have finite convergence stopping criteria.  They will not stop 
exactly at the true optimum.  Closeness to the optimum can be assessed either by the OF value 
or by the DV value deviations from the true optimum. We talk about finding the global optimum, 
but the reality is that the optimizer finds the proximity of an optima, not the exact point.  Precision 
could be measured by the rms (root-mean-square) deviation (either DV from DV*, or OF from 
OF*) from those trials that located the global.  

5. Robustness.  This is a measure of the optimizer ability to cope with surface aberrations (cliffs, flat 
spots, slope discontinuities, hard constraints, stochastic OF values, a trial solution that is infeasible 
or cannot return an OF value).  It also includes the optimizer ability to generate a next feasible 
trial solution regardless of the surface features.  Perhaps a measure of robustness could be the 
fraction of times the optimizer can generate a feasible next trial solution. 

6. Scalability.  As the number of DVs increases, how does the computational time or storage 
increase?  How does the NOFE increase?  How do the requirements on the user (such as the 
number of user-chosen coefficient values that need to be specified for either the optimizer or the 
convergence criteria) increase?  The burden might be acceptable for low order applications, but 
excessive for higher dimension ones.  Do the diverse aspects rise linearly with DV dimension, as a 
quadratic, or exponentially?  

7. User understanding.  How easy is it for the user to understand the optimizer logic and 
computations?  How easy is it for the user to establish confidence that the optimizer result is in 
desired proximity of the global?  User ability to adapt the code.  Algorithm complexity. 

 
Since any of these metrics will depend on the initial trial solution(s) and the surface features of a specific 
objective function, you will need to run many trials and calculate an average value representing individual 
functions.  However, replicate trials from random initializations will not produce exact duplicate results.  
For simple problems, perhaps 20 trials are fully adequate to have relatively certain values of the statistics.  
However, you may need 100 to 10,000 trials to determine representative values for probability statistics 
associated with other attributes.  You should keep running trials until the standard deviation of the 
statistic of interest is small enough to confidently differentiate between statistic values representing 
different experimental conditions (optimizers, coefficients, convergence criteria).  Statistical comparisons 
need to be made on replicate results, such as a t-test of differences in NOFE.  The Central Limit Theorem 
reveals that the standard error of the average is inversely proportional to the square root of the number 
of replicate trials.      
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CǳǊǘƘŜǊΣ ƻƴŜ ƻǇǘƛƳƛȊŜǊ όbŜǿǘƻƴΩǎΣ ǎǳŎŎŜǎǎƛǾŜ ǉǳŀŘǊŀǘƛŎύ ƳƛƎƘǘ ƧǳƳǇ ǘƻ ǘƘŜ ǎƻƭǳǘƛƻƴ ƛƴ ƻƴŜ ǎǘŜǇ ƛŦ ǘƘŜ 
function is a simple quadratic response, but it might become hopelessly lost on a different function.  How 
do you compare optimizers?  You need to choose a set of test functions that represent a diversity of 
features.     
  
Peaks (#30) ς This function seems to be a MatLAB creation as a simple representation of several 
optimization issues.  It provides mountains and valleys in the middle of a generally outward sloping 
surface.  There are two major valleys, and between the mountains, a small local minima. If the trial 
solution starts on the North or East side of the mountains, it leads downhill to the North or East boundary.  
The Southern valley has the lowest elevation.  The surface is non-quadratic, and has multiple optima. 
The function is: 
 

x11 = 3 * (x1 - 5) / 5      'convert my 0-10 DVs to the -
3 to +3 range for the function 
x22 = 3 * (x2 - 5) / 5 
f_of_x = 3 * ((1 - x11) ^ 2) * Exp(-1 * x11 ^ 2 - (x22 + 
1) ^ 2) - _ 
            10 * (x11 / 5 - x11 ^ 3 - x22 ^ 5) * Exp(-1 * x11 
^ 2 - x22 ^ 2) - _ 
            (Exp(-1 * (x11 + 1) ^ 2 - x22 ^ 2)) / 3 
f_of_x = (f_of_x + 6.75) / 1.5 Ψǘƻ ŎƻƴǾŜǊǘ ǘƻ ŀ л ǘƻ 
10 f_of_x range 

 
 
Shortest Time (#47) ς This simple appearing function is very 
ŎƻƴŦƻǳƴŘƛƴƎ ŦƻǊ ǎǳŎŎŜǎǎƛǾŜ ǉǳŀŘǊŀǘƛŎ ƻǊ bŜǿǘƻƴΩǎ ŀǇǇǊƻŀŎƘŜǎΦ Lǘ 
represents a simple situation of a person on land on one side of a 
shallow river wanting to minimize the travel time to a point on 
land on the other side. It is also kin to light traveling the minimum 
time path through three media. Variables v1, v3, and v3 are the 
velocities through the near side, water, and far side; and x1 and x2 
represent the E-W distance that the path intersects the near side 
and far side of the river.  

v1 = 1 
v2 = 0.75 
v3 = 1.25 
xa = 1 
ya = 1 
xb = 9 
yb = 9 
a1 = 3 
b1 = -0.3 
a2 = 5 
b2 = 0.4 
y1 = a1 + b1 * x1 
y2 = a2 + b2 * x2 
distance1 = Sqr((x1 - xa) ^ 2 + (y1 - ya) ^ 2) 
distance2 = Sqr((x2 - x1) ^ 2 + (y2 - y1) ^ 2) 
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distance3 = Sqr((xb - x2) ^ 2 + (yb - y2) ^ 2) 
timetravel = distance1 / v1 + distance2 / v2 + distance3 / v3 
f_of_x = (timetravel - 12) * 10 / (32 - 12) 

 
¢ƘŜ ǇǊƻōƭŜƳ ǎǘŀǘŜƳŜƴǘ ŦǊƻƳ нлмн ǿŀǎΥ ά{ƘŜ ǿŀǎ ǇƭŀȅƛƴƎ ƛƴ ǘƘŜ ǎŀƴŘȅ ŀǊŜŀ ŀŎǊƻǎǎ ǘƘŜ ǊƛǾŜǊ ŦǊƻƳ ƘŜǊ ƘƻǳǎŜ 
when the dinner bell rang.  To get home she needed to run across the sand, run through the shallow lazy 
river, then run across the field to home.   She runs faster on land than on sand.  Both are faster than 
running though the knee-deep water.   What is the shortest-time path home?  On the x-y space of her 
world, she starts at location (1,1) and home is at (9,9).  Perhaps the units are deci-kilometers (dKm) (tenths 
of a kilometer).  Her speed through water is 0.75 dKm/min, through sand is 1.0 dKm/min, and on land is 
1.25 dKm/min.  The boundaries of the river are defined by y = 3.0 - лΦоȄ ŀƴŘ ȅ Ґ рΦл Ҍ лΦпȄΦέ 
  
Hose Winder (#46) ς This function presents discontinuities to the generally 
well-behaved floor.  It represents a storage box that winds up a garden hose 
on a spool.  When the winding hose gets to the end of the spool, it starts 
back but at a spool diameter that is larger by two hose diameters.  The 
diameter jump causes the discontinuities.  The objective is to design the 
storage box size and handle length to mƛƴƛƳƛȊŜ ǘƘŜ ƻǿƴŜǊΩǎ ǿƻǊƪ ƛƴ ǿƛƴŘƛƴƎ 
the hose.   
 
¢ƘŜ нлмн ǇǊƻōƭŜƳ ǎǘŀǘŜƳŜƴǘ ǿŀǎΥ  ά/ƻƴǎƛŘŜǊ ǘƘŀǘ ŀ ƘƻǎŜ ƛǎ нлл ŦŜŜǘ ƭƻƴƎΣ 
and 1.25 inch in diameter, and is wound on a 6 inch diameter spindle by a gear connection to the handle.  
The hose goes through a guide, which oscillates side-to-side to make the winding uniform.  Each sweep of 
the guide leads to a new hose layer, making the wind-on diameter 2.5 inches larger.    
 
Originally the hose is stretched out 200 ft.  To reel it in, the human must overcome the drag force of the 
hose on the ground.  Either a smaller spindle diameter or a larger handle radius reduces the handle force 
required to reel in the hose.  As the hose is reeled in, its residual length is less, and the drag force is less.  
But, when the first spindle layer is full and the hose moves to the next layer, the leverage changes, and 
the wind-up handle force jumps up.   
After winding 200 ft. of hose, the human is exhausted.  He had to overcome the internal friction of the 
device, the hose drag resistance, and move his own body up and down.   We wish to design a device that 
that minimizes the total human work (handle force times distance moving the handle + body work).  We 
also wish to keep the maximum force on the handle less than some excessive value (so that an old man 
can do the winding).   If you increase the handle radius, the force is lessened, but the larger range of 
motion means more body motion work.  There is a constraint on the handle radius ς it cannot make the 
ƘǳƳŀƴΩǎ ƪƴǳŎƪƭŜǎ ǎŎǊŀǇŜ ǘƘŜ ƎǊƻǳƴŘΦ 
 
If you make the spindle length longer, so that more hose is wound on each layer, then the hose wind-on 
diameter does not get as large, and the handle needs less force to counter the drag.   But, more turns to 
wind-in the hose means more body motion.    
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Further, consider the economics of manufacturing the box.   The box volume needs to be large enough to 
windup the hose on the spindle, and perhaps 20% larger (so that spiders can find space for their webs, I 
think).  Use 5 cuft.  If the side is square, then defining the 
length and volume sets the side dimensions.  Setting the 
weight and cost directly proportional to the surface area, the 
spindle length defines the cost of manufacturing and shipping. 
The objective function is comprised of a penalty for the 
maximum force, a penalty for the cost, and a penalty for the 
wind-ǳǇ ǿƻǊƪΦέ   
 
The 3-D view indicates a generally smooth approach to a 
minimum, but with local wrinkles on the surface.  The local 
valleys guide many optimizers to a false minimum. 
 
The VBA code is: 

If x1 <= 0 Or x2 <= 0 Then 
        constraint = "FAIL" 
        f_of_x = 15 
        Exit Function 
End If 
'    HandleRadius = x1 / 4               'nominal, scales 0-10 to 0-2.5 ft 
'    BoxWidth = x2 / 2                   'nominal, scales 0-10 to 0-5 ft 
HandleRadius = 1.8 + 0.04 * x1      'to focus on discontinuties' 
BoxWidth = 0.6 + 0.02 * x2          'to focus on discontinuities 
WindRadius = 0.25                   'spindle radius 3 inches as 1/4 ft 
BoxVolume = 5                       'cuft 
BoxSide = Sqr(BoxVolume / BoxWidth) 
If HandleRadius > 0.85 * BoxSide Then 
        constraint = "FAIL" 
        f_of_x = 15 
        Exit Function 
End If 
Area = 2 * BoxSide ^ 2 + 3 * BoxWidth * BoxSide     'no bottom closure 
HoseLength = 200                        'ft 
HoseDiameter = 0.1                      '1.25 inches = 0.1 ft 
DragLength = HoseLength 
dcircle = 0.025                         'fraction of circumfrence 
work = 0 
WindLength = 0 
Fmax = 0 
Do Until DragLength < 2                 'enough increments to wind up hose, leave 2 feet of hose outside 
winder 
        DragForce = 0.2 * DragLength        '0.2 is coefficient of friction lbf/ft of hose 
        HandleForce = (DragForce * WindRadius + 0.5) / HandleRadius + 1  'hose drag, torque to spin 
assembly, body motion 
        If HandleForce > Fmax Then Fmax = HandleForce 
        dwork = HandleForce * HandleRadius * 2 * 3.14159 * dcircle 
        work = work + dwork 
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        dlength = WindRadius * 2 * 3.14159 * dcircle    'incremental length wound in one circle 
increment 
        WindLength = WindLength + dlength               'total length wound on the layer 
        DragLength = DragLength - dlength               'length of hose left unwoound 
        If WindLength > (BoxWidth / HoseDiameter) * 2 * 3.14159 * WindRadius Then   'layer full, 
move to next 
            WindRadius = WindRadius + HoseDiameter      'update winding radius 
            WindLength = 0                              'reset wound length on new layer 
        End If 
Loop 
'    f_of_x = 10 * ((Fmax / 5) ^ 2 + (Area / 20) ^ 2 + (work / 1000) ^ 2 - 28) / (70 - 28)  'nominal 
f_of_x = 10 * ((Fmax / 5) ^ 2 + (Area / 20) ^ 2 + (work / 1000) ^ 2 - 28.25) / (28.45 - 28.25) 'to focus 
on discontinuities 
 
 

Boot Print in the Snow (#19) ς This represents a water reservoir 
design problem, but with very simple equations.  The objectives 
of a reservoir are to trap excessive rain water to prevent 
downstream floods, to release water downstream to 
compensate for upstream droughts, and to provide water for 
human recreational and security needs. We also want to 
minimize the cost of the dam and land.  The questions are how 
tall should the dam be and how full should the reservoir be kept.  
The taller it is, the more it costs; but the lower will be the 
probability of flood or drought impact, and the better the 
recreational and security features.  The fuller it is kept the less it 
can absorb floods, but the better the drought or recreational 
performance.  On the other hand if kept nearly empty it can 
mitigate any flood, but cannot provide recreation or drought 
protection.  The contour appears as a boot print in the snow.  The 
contours represent the economic risk (probability of an event times the cost of the event).  The minimum 
is at the toe.  The horizontal axis, x1, represents the dam height.  The vertical axis, x2, is the setpoint 
portion of full. 
 
A feature of this application that creates difficulty is that the bottom of the print is a plane, and 
optimization algorithms that use a quadratic model (or second derivatives) cannot cope with the zero 
values of the second derivative. 
 
The VBA code is: 
    If x1 < 0 Or x2 < 0 Or x1 > 10 Or x2 > 10 Then  

constraint = "FAIL" 
Exit Function 

    End If 
    x1line = 1 + 0.2 * (x2 - 4) ^ 2 
    deviation = (x1line - x1) 
    penalty = 5 * (1 / (1 + Exp(-3 * deviation)))    'logistic functionality 
    f_of_x = 0.5 * x1 - 0.2 * x2 + penalty + add_noise 
    f_of_x = 10 * (f_of_x - 0.3) / 6 
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Boot Print with Pinhole (#22) ς This is the same as Boot 
Print in the Snow, but the global minimum is entered with 
a small region on the level snow.  Perhaps an acorn fell 
from a high tree and drilled a hole in the snow.  The 
difficulty is that there is a small probability of starting in 
the region that would attract the solution to the true 
global.  Nearly everywhere, the trial solution will be 
attracted to the toe part of the boot print. 
 
The VBA Code is: 
    If x1 < 0 Or x2 < 0 Or x1 > 10 Or x2 > 10 Then  

constraint = "FAIL" 
Exit Function 

    End If 
    x1line = 1 + 0.2 * (x2 - 4) ^ 2 
    deviation = (x1line - x1) 
    penalty = 5 * (1 / (1 + Exp(-3 * deviation)))    'logistic functionality 
    f_of_x = 0.5 * x1 - 0.2 * x2 + penalty + add_noise 
    x1mc2 = (x1 - 1.5) ^ 2 
    x2mc2 = (x2 - 8.5) ^ 2 
    factor = 1 + (5 * (x1mc2 + x2mc2) - 2) * Exp(-4 * (x1mc2 + x2mc2)) 
    f_of_x = factor * f_of_x + add_noise 
    f_of_x = 10 * (f_of_x - 0.3) / 6 
   
Stochastic Boot Print (#20) ς This represents the same 
water reservoir design problem as Boot Print in the Snow; 
however, the surface is stochastic.  The OF value depends on 
a probability of the flood or draught event.  Because of this 
each realization of the contour will yield a slightly different 
appearance.  One realization of the 3-D view is shown.  Note 
that starting in the middle of the DV space on the planar 
portion, a down-hill optimizer will progressively move 
toward the far side of the illustration where the spikes are.  
In that region of a small reservoir kept too full or too empty, 
there is a probability of encountering a costly flood or 
draught event that the reservoir cannot mitigate.  Moving in 
the down-hill direction the optimizer may, or may not, encounter a costly event.  If it does not, it continues 
to place trial solutions into a region with a high probability of a disastrous event, and continues into the 
bad region as the vagaries of probability generate fortuitous appearing OF values.   
 
The VBA code is: 
    If x1 < 0 Or x2 < 0 Or x1 > 10 Or x2 > 10 Then  

constraint = "FAIL" 
Exit Function 

    End If 
    x1line = 2 + 0.2 * (x2 - 4) ^ 2 
    penalty = 0 
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    deviation = (x1line - x1) 
    probability = 1 / (1 + Exp(-1 * deviation)) 'logistic functionality 
    If probability > Rnd() Then penalty = 5 * probability 
    f_of_x = 0.5 * x1 - 0.2 * x2 + penalty + add_noise 
    f_of_x = 10 * (f_of_x + 1.25) / 7.25 
 
Two realizations of the contour are shown here and reveal the stochastic nature of the surface, the non-
repeatability of the OF value.  Now, in addition to the difficulty of the planar midsection, the optimizer 
also faces a stochastic surface that could lead to a fortuitous minimum in a high risk section of too small 
a dam (x-axis) or keeping the reservoir too full or empty (y-axis). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Reservoir (#18) ς This is the basis for Stochastic Boot 
Print, but it is a computationally time-consuming Monte 
Carlo simulation of a water reservoir.  Reservoir capacity 
and nominal level are the decision variables.   
 
The larger the reservoir, the greater the initial cost.  Cost 
is the objective function.  So, superficially, build a small 
dam and have a small reservoir to reduce cost.  
However, if the reservoir is too small, and/or it is 
maintained nearly full, it does not have enough capacity 
to absorb an up-stream flood due to exceptionally heavy 
rainfall, and it will transmit the flood down-stream.  
Down-stream flooding incurs a cost of damaged 
property.  But, the chance of a flood, and the magnitude of the flood depend on the up-stream rainfall.  
So, the simulator models a day-to-day status with a log-normal rainfall distribution for a time-period of 20 
years.  (You can change the simulated time, or rain fall distribution.) 
 
On the other side of flooding conditions are drought conditions.  If the reservoir is too small, and/or 
maintained with little reserve of water, an upstream drought will require stopping the water release, 
which stops down-stream river flow.  Down-stream dwellers, recreationists, or water users will not like 
this.  There is also a cost related to zero down-stream flow. 
 
There is a fixed cost of the structure, and a probabilistic or stochastic cost of extreme flood or draught 
events. 
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Since one 20-ȅŜŀǊ ǎƛƳǳƭŀǘƛƻƴ ǿƛƭƭ ƴƻǘ ǊŜǾŜŀƭ ǘƘŜ ŎƻƴŦƭǳŜƴŎŜ ƻŦ άмлл-ȅŜŀǊ ŜǾŜƴǘǎέΣ ǘƘŜ ǎƛƳǳƭŀǘƻǊ Ǌǳƴǎ рл 
reservoirs for 20 years each ς 50 realizations of the 20-year period.  You can change the number of 
realizations.  
 
The function is set-up to return either the maximum cost for the 50 realizations, or the estimated 99% 
probable upper limit on the cost.  You could choose another performance indicator. 
 
An excessively large reservoir kept half full will have ample reserve (to keep water flowing in a drought) 
and open capacity (to absorb excess rainfall and prevent down-stream flooding), but it will cost a lot.  A 
smaller reservoir will have less cost.  But, too small a reservoir will not prevent problems with drought or 
flood.  So, there is an in between optimum size. 
 
If the nominal volume is near the full mark, then the reservoir will not be able to absorb floods, but it will 
have plenty of capacity for a drought.  If the nominal level is too low, it will be able to prevent a flood, but 
not keep water flowing for a drought event.  So, there is also an in between setpoint capacity that is best.  
The optimum setpoint for the level might not be at 50%.  It depends on whether the vagaries of rainfall 
make floods a bigger event than droughts. 
 
For any given sized reservoir, the fuller it is kept the greater is the fresh water reserve and recreational 
area.  So, other benefits are added as a negative penalty to the cost. 
 
There is a fixed cost of the structure, a probabilistic or stochastic cost of extreme events, and a negative 
penalty for reserve and recreation benefits. 
 
The figure is rotated to provide a good view of the surface.  The optimum is in the upper left of the figure.  
The lower axis is x2, the water level nominal setpoint for the reservoir.  At zero the reservoir is empty, at 
10 it is completely full.  The nearly vertical axis on the right is the reservoir size, zero is a nonexistent 
reservoir, 10 is large.  
 
Similar to Stochastic Boot Print, this function presents optimizer difficulties of the planar midsection and 
a stochastic surface that could lead to a fortuitous minimum in a high risk section of too small a dam (x-
axis) or keeping the reservoir too full or empty (y-axis).   It is a more realistic Monte Carlo simulation than 
Stochastic Boot Print, but takes longer to compute, and provides the same issues for an optimizer as 
Stochastic Boot Print. 
 
The VBA code is: 
    twoPi = 2 * 3.1415926535 
    inchavg = 0.4                   'average inches of rainfall/event 
    prain = 0.25                    'daily probability of rain 
    sy = Log(5 / inchavg) / 1.96    'sigma for log-normal distribution 
    Qinavg = prain * inchavg * 2.54 * 10 ^ 6    'average water volume collected/day 
    Useravg = 0.4 * Qinavg                      'average daily water demand by users 
    Qoutavg = Qinavg - Useravg                  'average excess water/day released downstream 
    Vc = (100 + x1 * 100) * 0.25 * inchavg * 2.54 * 10 ^ 6  'reservoir capacity, from scaled DV x1 
    If Vc < 0 Then Vc = 0 
    Vset = (0.3 + 0.65 * x2 / 10) * Vc                      'reservoir setpoint from scaled DV x2 
    Vmin = 0.3 * Vc                                         'Minimum residual capacity in reservoir, a constraint 
    inchflood = 12                           'rain fall amount at one time that causes a flood downstream 
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    Qflood = inchflood * 2.54 * 10 ^ 6      'volume of water/day associated with the flood rain 
    v = Vset                                'initialize simulation with water at the setpoiny 
    TotalDays = 1 * 365                'simulation period in days 
    NRealizations = 10                  'number of realizations simulated 
    MaxCost = 0                         'initialize total cost for any realization 
    For Realization = 1 To NRealizations 
        Cost(Realization) = 0.0001 * Vc ^ 0.6       'cost of initial reservoir 
        For Daynum = 1 To TotalDays 
            If Rnd() > 0.25 Then                    'does it rain? 
                inches = 0                          'if no 
            Else 
                inches = inchavg * Exp(sy * Sqr(-2 * Log(Rnd())) * Sin(twoPi * Rnd())) 
                If inches > 25 Then inches = 25     'log-normal occasionally returns some excessive numbers. 
maybe rainfall is not log-normally distributed 
            End If 
            Qin = inches * 2.54 * 10 ^ 6            'incoming water volume due to rain - level times area 
            If v <= Vmin Then Qout = 0              'control logic for water release 
            If Vmin < v And v <= Vset Then Qout = Qoutavg * (v - Vmin) / (Vset - Vmin) 
            If Vset < v And v <= Vc Then Qout = Qoutavg + (v - Vset) * (Qflood - Qoutavg) / (Vc - Vset) 
            vnew = v + Qin - Qout - Useravg         'reservoir volume after a day if Qout as calculated 
            If vnew > Vc Then                       'override if reservoir volume would exceed capacity 
                Qout = Qin - Useravg - (Vc - v) 
                vnew = Vc 
            End If 
            If vnew < Vmin Then                     'override if reservoir volume would fall lower than Vmin 
                Qout = v - Vmin + Qin - Useravg 
                If Qout < 0 Then Qout = 0 
                vnew = v + Qin - Qout - Useravg 
            End If 
            v = vnew 
            If Qout > Qflood Then                   'cost accumulation if a flood event 
                discount = (1 + 0.03) ^ Int(Daynum / 365)   'discount factor 
                Cost(Realization) = Cost(Realization) + (0.1 * ((Qout - Qflood) / 10 ^ 6) ^ 2) / discount 
            End If 
            If Qout = 0 Then                        'cost accumulation if a drought event 
                discount = (1 + 0.03) ^ Int(Daynum / 365) 
                Cost(Realization) = Cost(Realization) + 1 / discount 
            End If 
        Next Daynum 
        If Cost(Realization) > MaxCost Then MaxCost = Cost(Realization) 
    Next Realization 
    costsum = 0             'determine average cost per realizaton 
    For Realization = 1 To NRealizations 
        costsum = costsum + Cost(Realization) 
    Next Realization 
    AvgCost = costsum / NRealizations 
    cost2sum = 0            'determine variance of realization-to-relaization cost 
    For Realization = 1 To NRealizations 
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        cost2sum = cost2sum + (Cost(Realization) - AvgCost) ^ 2 
    Next Realization 
    SigmaCost = Sqr(cost2sum / (NRealizations - 1)) 
    f_of_x = AvgCost + 3 * SigmaCost        'Primary OF is 3-sigma, 99.73 probable upper limit 
    f_of_x = f_of_x - 0.2 * x2              'Secondary OF adds a benefit (negative penalty) for high setpoint level 
    f_of_x = 10 * (Sqr(f_of_x) - 2) / (15 - 4) + add_noise              'scale factor for display convenience 
'    f_of_x = MaxCost - 0.2 * x2 - 4        'OF based on max cost for the several realizations 
    If Vset < Vmin Or Vset > 0.95 * Vc Or Vc <= 0 Then  'hard constraint 
        constraint = "FAIL" 
    End If 
 
/ƘƻƴƎ ±ǳΩǎ bƻǊƳŀƭ wŜƎǊŜǎǎƛƻƴ (#11) ς Chong Vu was a student 
exploring various regression objective functions as part of the 
Optimization Applications course, and created this test 
problem for a best linear relation to fit 5 data points 
representing contrived noisy data.  The points are (0,1), (0,2), 
(1,3), (1,1), and (2,2).  X1 and x2 are scaled to represent the 
slope and intercept of the linear model.  The OF value is 
computed as the sum of squared normal distances from the line 
to the data (as opposed to the traditional vertical deviation 
least squares that assumes variability in the y-measurement 
only).  
 
The minimum is at about x1=8, x2=2 in the near valley.  The function is relatively well behaved, and even 
though it represents a sum of squared deviations, it is not a quadratic shape.  Further, trial solutions in 
the far portion of the valley send the solution toward infinity (x1=-қΣ ȄнҐҌқύΦ 
 
The VBA Code is: 
    m11 = 0.5 * x1 - 3        'coefficients adjusted to fit better on x1, x2 display scale 
    b11 = 0.3 * x2 + 0.5 
    Sum = 0 
    Sum = Sum + (1 - m11 * 0 - b11) ^ 2     'first of 5 pairs of x,y data y=1, x=0 
    Sum = Sum + (2 - m11 * 0 - b11) ^ 2 
    Sum = Sum + (3 - m11 * 1 - b11) ^ 2 
    Sum = Sum + (1 - m11 * 1 - b11) ^ 2 
    Sum = Sum + (2 - m11 * 2 - b11) ^ 2 
    f_of_x = Sum / (1 + m11 ^ 2) - 2          'sum of vertical distance squared converted to normal d^2 
Ψ    ŦψƻŦψȄ Ґ лΦс ϝ (f_of_x - 1 + 0.02 * (x1 - x2 + 3) ^ 2)  'OF adjusted for display appearance and to keep 
solution in bounds 
    If x1 < 0 Or x2 > 10 Then constraint = "FAIL"              'there is an off-graph attractor seems to be at -
infinity, + infinity 
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Windblown (#61) ς A person wants to travel from Point 
A to Point B, and chooses two linear paths from A to Point 
C then C to B so that the cumulative impact of the wind 
is minimized.  Perhaps he is not wearing his motorcycle 
ƘŜƭƳŜǘΣ ŀƴŘ ŘƻŜǎƴΩǘ ǿŀƴǘ Ƙƛǎ ƘŀƛǊ ǘƻ ƎŜǘ ƳŜssed up.  The 
DVs are the x1 and x2 coordinates for point C.  The wind 
blows in a constant (not stochastic) manner, but the wind 
velocity and direction change with location.  The travel 
velocity is constant.  If point C is out of the high windy 
area, but far away, the travel time is high and the low 
wind experience persists for a long time.  If point C is on 
the line between A and B, representing the shortest 
distance path, and lowest time path, it takes the traveler 
into the high wind area, and even though the time is minimized, the cumulative wind damage is high.  The 
impact is due to the square of the difference of the wind and travel velocity.  Moving at 25 mph in the 
same direction as a 25 mph wind is blowing is like being in calm air.  But, traveling in the opposite direction 
is like standing in a 50 mph wind.   The objective is to minimize the cumulative impact, the integral of the 
squared velocity difference along the A-C-B path.    
 
The function provides some discontinuities as evidenced by the kinks in the contours.  And, there are two 
minima, the global is to the front-left of the lower contour, and the secondary is to the back right.  Both 
minima are in relatively flat spots.  
 
Suresh Kumar Jayaraman helped me explore this simulation of a path integral.  The VBA code is: 
    xc = x1     'Optimizer chooses point C 
    yc = x2 
    xa = 2      'User defines points A and B 
    ya = 4 
    xb = 9 
    yb = 6 
    N = 200     'Discretization number of intervals 
    velocity = 1.5        'Velocity of traveller 
    wind_coefficient = 0.1            'Coefficient for velocity of wind 
                                    'from A to C 
    xi = xa     'xi and yi are locations along the path 
    yi = ya 
    D1 = Sqr((xa - xc) ^ 2 + (ya - yc) ^ 2)     'total path distance 
    dD1 = D1 / N                                'path incremental length 
    time_interval = dD1 / velocity              'travel time along path increment 
    dxi1 = (xc - xa) / N                        'incremental x increments 
    dyi1 = (yc - ya) / N                        'incremental y increments 
    If xc = xa Then 
        vx = 0                                  'traveler x velocity 
    Else 
        vx = velocity * (1 + ((yc - ya) / (xc - xa)) ^ 2) ^ -0.5 
    End If 
    If yc = ya Then 
        vy = 0                                  'traveler y velocity 
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    Else 
        vy = velocity * (((xc - xa) / (yc - ya)) ^ 2 + 1) ^ -0.5 
    End If 
    im1 = 0                                     'integral of impact on path 1 
    For Path_Step = 1 To N 
        If D1 = 0 Then Exit For 
        xi = xi + dxi1 
        yi = yi + dyi1 
        wx = (-wind_coefficient * xi ^ 2 * yi) / Sqr((xi + 0.1) ^ 2 + (yi + 0.1) ^ 2) 
        wy = (wind_coefficient * xi * yi ^ 2) / Sqr((xi + 0.1) ^ 2 + (yi + 0.1) ^ 2) 
        lim = Sqr((vx - wx) ^ 2 + (vy - wy) ^ 2) 
        im1 = im1 + lim 
    Next Path_Step 
    im1 = im1 * time_interval                   'total impact scaled by time 
                                    'from C to B 
    xi = xc 
    yi = yc 
    D2 = Sqr((xc - xb) ^ 2 + (yc - yb) ^ 2) 
    dD2 = D2 / N 
    time_interval = dD2 / velocity 
    dxi2 = (xb - xc) / N 
    dyi2 = (yb - yc) / N 
    If xc = xb Then 
        vx = 0 
    Else 
        vx = velocity * (1 + ((yb - yc) / (xb - xc)) ^ 2) ^ -0.5 
    End If 
    If yc = yb Then 
        vy = 0 
    Else 
        vy = velocity * (((xb - xc) / (yb - yc)) ^ 2 + 1) ^ -0.5 
    End If 
    im2 = 0 
    For Path_Step = 1 To N 
        If D2 = 0 Then Exit For 
        xi = xi + dxi2 
        yi = yi + dyi2 
        wx = (-wind_coefficient * xi ^ 2 * yi) / Sqr((xi + 0.1) ^ 2 + (yi + 0.1) ^ 2) 
        wy = (wind_coefficient * xi * yi ^ 2) / Sqr((xi + 0.1) ^ 2 + (yi + 0.1) ^ 2) 
        lim = Sqr((vx - wx) ^ 2 + (vy - wy) ^ 2) 
        im2 = im2 + lim 
    Next Path_Step 
    im2 = im2 * time_interval 
    f_of_x = im1 + im2 
    f_of_x = 10 * (f_of_x - 18) / (35 - 18) 
    f_of_x = f_of_x + add_noise 
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Integer Problem (#33) ς This simple example represents 
a classic manufacturing application.  Minimize a function 
(perhaps maximize profit) of DVs x1 and x2 (perhaps the 
number of items of products A and B to make), subject to 
constraints (perhaps on capacity), and requiring x1 and x2 
to be integers (you can only sell whole units).   
 
There are many similar examples in textbooks. 
 
The attributes of such applications are the level 
discontinuities (cliffs) as the integer value changes, and 
the flat spots over the range of DV values that generate 
the same integer value. The surface is nonanalytic ς 
derivatives are either zero or infinity.  This illustration illustrates the constraint regions with a high OF 
value. 
 
The VBA Code is: 
    x11 = Int(x1) 
    x22 = Int(x2) 
    f_of_x = 11 - (4 * x11 + 7 * x22) / 10  
    If 3 * x11 + 4 * x22 > 36 Then constraint = "FAIL" 
    If x11 + 8 * x22 > 49 Then constraint = "FAIL" 
 
Reliability (#56) ς ¢Ƙƛǎ ŀǇǇƭƛŎŀǘƛƻƴ ǊŜǇǊŜǎŜƴǘǎ ŀ ŘŜǎƛƎƴŜǊΩǎ 
choice of the number and size of parallel items for system 
success.  Consider a bank of exhaust fans needed to keep 
building air refreshed, as I had to when I worked in industry.  
The fans are operating in parallel.  If one fails, air quality 
deteriorates.  If there are 3 operating fans and one spare; 
when one fails, the spare can be placed online.  This 
increases reliability of the operation, but increases the cost 
of the fan assembly by 4/3.  Even so, reliability is not perfect.  
There is a chance that two fans will fail, or three. Perhaps 
have three spares.  Now, the cost is 6/3 of the original fan 
station.  In either case, the cost needs to be balanced by the probability of the fan bank not handling the 
load.  Alternately, it could be balanced by risk (the financial penalty of an event, times the probability that 
an event will happen). 
 
A clever cost reduction option is to use smaller capacity items, but more of them.  For example, if there 
are 4 operating fans, each only has to have ¾ of the capacity of the original three.  Using the common 
6/10ths power law for device cost, the smaller fans each cost (3/4)0.6 of the original three, but there are 4 
of them.  So, the cost of the zero-spare situation with 4 smaller fans is higher than the cost of the 3 larger 
fans.  The ratio is 4* (3/4)0.6  /3 = 1.12.  However, if three spares are adequate, the cost of 7 smaller fans 
is lower than the cost of 6 larger fans.  The ratio is 7* (3/4)0.6  /6 = 0.98.    
 
The optimization objective is to determine the number of operating units and the number of spare units 
to minimize cost with a constraint that the system reliability must be greater than 99.99%.  
 



Optimization Applications  2016-05-17 R. Russell Rhinehart 
 

Page 15 of 51 
 

The realizable values of the DVs must be integers.  This creates flat surfaces with cliff discontinuities 
(derivatives are either zero or infinity), and the constraint creates infeasible DV sets.   
 
The VBA Code is: 
    N = 3 + Int(8 * x1 / 10 + 0.5) 'total number of components 
    M = Int(5 * x2 / 10 + 0.5) 'number of operating components needed to meet capacity 
    p = 0.2             'probability of any one component failing 
    q = 1 - p           'probability of any one component working 
    If M > N Then 
        f_of_x = 0 
        constraint = "FAIL" 
        Exit Function 
    End If 
    If M > 0 Then 
        f_of_x = N * (1 / M) ^ 0.6 
    Else 
        f_of_x = 0 
        constraint = "FAIL" 
        Exit Function 
    End If 
    P_System_Success = 0 
    For im = 0 To N - M 
        P_System_Success = P_System_Success + (factorial(N) / (factorial(im) * factorial(N - im))) * (p ^ im) * 
(q ^ (N - im)) 
    Next im 
    If P_System_Success < 0.999 Then 
        f_of_x = 0 
        constraint = "FAIL" 
        Exit Function 
    End If 
     
The factorial function is: 
    factorial = 1 
    If NUM = 1 Or NUM = 0 Then Exit Function 
    For iNUM = 2 To NUM 
        factorial = factorial * iNUM 
    Next iNUM 
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Frog (#2) ς I generated this function as a final project for a 
freshman-level computer programming class when I was a PhD 
candidate at NCSU.  It included nested loops and conditionals 
to assign text symbols to array variables, then printing the 
array.  Students would know when they have the right answer!  
The eyes represent equal global optima.  There are also three 
minima in the mouth.  To add difficulty for an optimizer, there 
is an oval constraint, a forbidden area, surrounding the eye in 
the upper left.  Down-hill type optimizers get stuck on the 
constraint northwest of the eye.  The face is also relatively flat 
tricking some convergence criteria to stop early. 
 
The VBA Code is: 
f_of_x = 2 + 1 * (((x1 - 5) ^ 2) + ((x2 - 5) ^ 2)) * (0.5 - Exp((-((x1 - 3.5) ^ 2)) - _ 
        ((x2 - 7) ^ 2))) * (0.5 - Exp((-((x1 - 6.5) ^ 2)) - _ 
        ((x2 - 7) ^ 2))) * (0.5 + (Abs(Sqr(((x1 - 5) ^ 2) / ((x2 - 11) ^ 2)))) - _ 
        (Exp(-(Sqr(((x1 - 5) ^ 2) + ((x2 - 11) ^ 2)) - 7) ^ 2)))  
If (x1 - 3.5) ^ 2 + (x2 - 7) ^ 4 <= 2 Then 
        constraint = "FAIL"                                             'Hard constraint approach 
Else 
        constraint = "OK" 
End If 
 
 
Hot and Cold Mixing (#36) ς This function represents the 
control action required to meet steady-state mixed 
temperature and flow rate targets of 70 C and 20 kg/min from 
the current conditions of 35C and 8 kg/min.  The DVs are the 
signals to the hot and cold valves.   
 
Hot and cold fluid are mixed in line, and the objective is to 
determine the hot and cold flow control valve positions, o1 
and o2, to produce the desired mixed temperature and total 
flow rate.  The valves have a parabolic inherent characteristic, 
and identical flow rate vs. valve position response.  The 
control algorithm is the Generic Model Control (GMC) law with a steady-state model, and the desire to 
target for 20% beyond the biased setpoint, Kc=1.2.  There is uncertainty on the model parameters of the 
supply temperatures, measured flow rate and temperature, and valve Cv.  The controller objective is to 
determine o1 and o2 values that minimize the equal-concern weighted deviations from target at steady-
state.  
 

ὐ    

 
The first term in the OF relates to the temperature deviation, and the second term the flow rate deviation.  
The deviations are weighted by the equal-concern factors, ET and EF.   The numerator of each term starts 
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with the calculated target value (beyond the setpoint), and subtracts from it the modeled value.  The OF 
is the equal-concern-weighted, sum of squared deviations.   
 
The VBA code is: 
If x1 <= 0 Or x1 > 10 Or x2 <= 0 Or x2 > 10 Then 
        constraint = "FAIL" 
        Exit Function 
    End If 
    o1 = 10 * x1        'hot valve position, % 
    o2 = 10 * x2        'cold valve position, % 
    SetpointT = 70                      'Celsius 
    add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
    FromT = 35 * (1 + add_noise)        'Celsius 
    SetpointF = 20                      'm^3/min 
    add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
    FromF = 8 * (1 + add_noise)         'm^3/min 
    add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
    HotTin = 80 * (1 + add_noise)       'Celsius 
    add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
    ColdTin = 20 * (1 + add_noise)      'Celsius 
    add_noise = Worksheets("Main").Cells(8, 12) * Sqr(-2 * Log(Rnd())) * Sin(2 * 3.14159 * Rnd()) 
    ValveCv = 0.0036 * (1 + add_noise)  'm^3/min/%^2 
    EC4T = 0.15                         'Celsius^(-2) 
    EC4F = 1                            '(m^3/min)^(-2) 
    f_of_x = EC4T * (1.2 * (SetpointT - FromT) + FromT - (HotTin * o1 ^ 2 + ColdTin * o2 ^ 2) / (o1 ^ 2 + o2 ^ 
2)) ^ 2 + EC4F * (1.2 * (SetpointF - FromF) + FromF - ValveCv * (o1 ^ 2 + o2 ^ 2)) ^ 2 
    f_of_x = f_of_x / 150 
 
This is a simple function, but provides substantial misdirection to a steepest descent optimizer that starts 
in the far side.  It has steep walls, but a low slope at the proximity of the minimum.  Some optimizers 
starting in the proximity of the optimum do not make large enough DV changes, and convergence criteria 
can stop them where they start.  
 
With no uncertainty on model values, the contour of the 2-D search or o1 and o2 appears as the left figure 
below, which is interesting enough as a test case for nonlinear optimization.  However, with a 5% nominal 
uncertainty, the center figure, the contours are obviously irregular, and the 3-D plot of OF vs. DVs, the 
right hand figure, reveals the irregular surface. 
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Curved Sharp Valleys (#8) ς This is a contrivance to provide a 
simple function with a slope discontinuity at the global 
minimum (in the valley near the lower right of the figure, but 
in the interior, at about the point x1=8, x2=3).  At the 
minimum the slope of the valley floor is low compared to the 
side walls.  This means that from any point in the bottom of 
the valley there is only a small directional angle to move to a 
lower spot.  Nearly all directions point up hill.  Also the valley 
is curved, so that once the right direction is found, it is not the 
right direction for the next moveΦ  aƻǎǘ ƻǇǘƛƳƛȊŜǊǎ ǿƛƭƭ άǘƘƛƴƪέ 
they have converged when they are in the steep valley, and 
multiple runs will lead to multiple ending points that trace the valley bottom.  The surface has another 
minimum in a valley in the upper right, and a well behaved local minimum up on the hill in the far right.   
Both the Parameter Correlation and the ARMA Regression function have a similar feature.  This 
exaggerates it, and has a very simple formulation. 
 
The VBA Code is: 
   f_of_x = 0.015 * (((x1 - 8) ^ 2 + (x2 - 6) ̂  2) + _ 
        15 * Abs((x1 - 2 - 0.001 * x2 ^ 3) * (x2 - 4 + 0.001 * x1 ^ 3)) - _ 
        500 * Exp(-((x1 - 9) ^ 2 + (x2 - 9) ^ 2))) 
 
 
Parallel Pumps (#41) ς This represents a redundancy design 
ŀǇǇƭƛŎŀǘƛƻƴ ŦǊƻƳ ŀ нлмм ŀǎǎƛƎƴƳŜƴǘ ǿƻǊŘŜŘ ŀǎ ά! ŎƻƳǇŀƴȅ 
has three identical centrifugal pumps in parallel in a single 
process stream.  The pumps run at a constant impeller 
speed.  They wish to have a method that chooses how many 
pumps should be operating, and what flow rate should go 
through each operating pump to minimize energy 
consumption for a given total flow rate.  The inlet and outlet 
pressures on the overall system of pumps remain a 
constant, but not on each individual pump.  The individual 
flow rates out of each pump are controlled by a flow control 
valve.   


