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Optimization Challenge Problems
(2-D and Single OF)
R. RusseRhinehart

Challenges for Optimizers:

This set of objective functions (OF) was created to provide sample challenges for testing optimizers. The
examples are all twadimensional, having two decision variabléBV) so as to provide visual
understanding of the issues that they embody. Most are relatively simple to program and compute rather
simply, for user convenience. Most represent physically meaningful situations, for the person who wants
to see utility andelevance. All are presented with minimization as the objective. All DVs and OF values
are scaled on a 0 to 10 basis for common presentation.

Classic challenges to optimizers are objective functions that have:
1. non-quadratic behavior,
2. multiple optima,
3. stochastic responses,
4. asymptotic approach to optima at infinity,
5. hard inequality constraints, or infeasible regions,
6. slope discontinuities (sharp valleys),
7. a gently sagging channel (effectively slope discontinuities),
8. level discontinuities (cliffs),
9. flat spots,
10. nearly flat spots,
11. very thin global optimum in a large surface,hiole optima, improbable to find,
12. discrete, integer, or class DVs mixed with continuous variables,
13. underspecified problems with infinite number of equal solutions,
14. discontinuous reggonse to seemingly continuous DVs because of discretization in a
numerical integration, and
15. Sensitivity of DV or OF solution to givens.

In all equations that follow, x1 and x2 are the DVs, and f_of x is the OF value. The DVs are programmed
for the rang€0, 10]. However, not all functions use DV values in that range. So, the DVs are scaled for
the appropriate range and labeled x11 and x22. The OF value f_of x is similarly scaled for a [0, 10] range.
Any solution depends on the optimizer algorithm, twefficients of the algorithm, and the convergence
criteria. For instance, a mufplayer optimizer has an increased chance of finding the global optimum. An
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to the optimum when near it, but can jump in the wrong direction when not in the proximity. The values
for optimizer coefficients (scaling, switching, number of players, number of replicates, initial step size,
tempering or acceleration) can maka aptimizer efficient for one application, but with the same values

it might be sluggish or divergent in an application with other features. The convergence criteria may be
right for one optimizer, but stop another long before arriving at an optimum. WWwu are exploring
optimizers, realize that the results are dependent on your choice of optimizer coefficients and
convergence criteria, as well as the optimizer and the features of the test function.

There are several metrics used to assess optimizaet (@efficient choice) performance. We desire to
have:
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1. A minimum number of function evaluations (NOFE). Each function evaluation represents either
computer work, or experimental cost. Be sure to include either numerical or analytical
evaluations of grdients and Hessian elements in the NOFE. These derivative evaluations might
be a part of the optimizer, or they could be within a convergence criterion. Count them all.

2. Minimum computer time. Nominally, the OF evaluation is the most time consumingtaspec
where the computer must sort through multiple players or apply convoluted logic, the optimizer
logic may take more time than the OF evaluation. When you accumulate optimizer time, be sure
to exclude unnecessary display I/O and the function evalondiime.

3. Maximum probability of finding the global optima. When there are multiple optima, traps,
diversions to a constraint, etc. the likelihood of any particular run of an optimizer in finding the
global is important. You many need 1000 or more ruamfrandom initializations to be able to
assess the probability of an optimizer to find the global. Accuracy could be measured by the
probability that the optimizer identifies the global (converges in the vicinity of the global).

4. Precision. This is theosleness of the optimizer to the true optimum. The optimizers are
numerical procedures which also have finite convergence stopping criteria. They will not stop
exactly at the true optimum. Closeness to the optimum can be assessed either by the OF value
or by the DV value deviations from the true optimum. We talk about finding the global optimum,
but the reality is that the optimizer finds the proximity of an optima, not the exact point. Precision
could be measured by the rms (reoteansquare) deviatior(either DV from DV*, or OF from
OF*) from those trials that located the global.

5. Robustness. This is a measure of the optimizer ability to cope with surface aberrations (cliffs, flat
spots, slope discontinuities, hard constraints, stochastic OF valtresd,solution that is infeasible
or cannot return an OF value). It also includes the optimizer ability to generate a next feasible
trial solution regardless of the surface features. Perhaps a measure of robustness could be the
fraction of times the optnizer can generate a feasible next trial solution.

6. Scalability. As the number of DVs increases, how does the computational time or storage
increase? How does the NOFE increase? How do the requirements on the user (such as the
number of useichosen coeftient values that need to be specified for either the optimizer or the
convergence criteria) increase? The burden might be acceptable for low order applications, but
excessive for higher dimension ones. Do the diverse aspects rise linearly with Dgidimas a
guadratic, or exponentially?

7. User understanding. How easy is it for the user to understand the optimizer logic and
computations? How easy is it for the user to establish confidence that the optimizer result is in
desired proximity of the gladd? User ability to adapt the code. Algorithm complexity.

Since any of these metrics will depend on the initial trial solution(s) and the surface features of a specific
objective function, you will need to run many trials and calculate an average negdtessenting individual
functions. Howeverneplicate trials from random initializations will not produce exact duplicate results.
For simple problems, perhaps 20 trials are fully adequate to have relatively certain values of the statistics.
However, yo may need 100 to 10,000 trials to determine representative values for probability statistics
associated with other attributes. You should keep running trials until the standard deviation of the
statistic of interest is small enough to confidently diffietiate between statistic values representing
different experimental conditions (optimizers, coefficients, convergence critegeistical comparisons

need to be made on replicate results, such adest of differences in NOFE. The Central Limit fdrao
reveals that the standard error of the average is inversely proportional to the square root of the number
of replicate trials.
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function is a sirple quadratic response, but it might become hopelessly lost on a different function. How

do you compare optimizers? You need to choose a set of test functions that represent a diversity of
features.

Peaks (#30) This function seems to be a MatLABeation as a simple representation of several
optimization issues. It provides mountains and valleys in the middle of a generally outward sloping
surface. There are two major valleys, and between the mountains, a small local minima. If the trial
solution starts on the North or East side of the mountains, it leads downhill to the North or East boundary.
The Southern valley has the lowest elevation. The surface iguadratic, and has multiple optima.

The function is:

x11=3*(x:t5)/5 ‘cowmert my G10 DVs to the
3 to +3 range for the function
X22=3*(x25)/5
f of x=3*((:x11)"2)*Expl * x11 " 2- (x22 +
1)"2)-_

10 * (x11 /5 x11 ~ 3-x22 * 5) * Exp( * x11
N2-X2212)

(Expfl * (x11+ 1) " 2-x22 1 2))/ 3
f of x=(f of x+6.75)/15 Wi 2 O2y @S
10 f_of_x range

Shortest Time(#47) ¢ This simple appearing function is ver-
O2yF2dzy RAy3a TF2N) adz0O0SaairodsS | pli2yQa
represents a simple situation of a person on land on one side

shallow river wanting to minimize the travel time to a point ¢
land on the oher side. It is also kin to light traveling the minimu
time path through three media. Variables v1, v3, and v3 are

velocities through the near side, water, and far side; and x1 anc
represent the BV distance that the path intersects the near sic
and far side of the river.

vi=1
v2=0.75
v3=1.25
xa=1
ya=1
xb=9
yb=9
al=3
bl =-0.3
a2=5
b2=04

yl=al+bl*xl
y2=2a2 + b2 *x2
distancel = Sqr((xIxa) * 2 + (ytya) " 2)
distance2 = Sqr((xX1) " 2 + (y2y1) " 2)
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distance3= Sqr((xb x2) * 2 + (yby2) ~ 2)
timetravel = distancel / v1 + distance2 / v2 + distance3 / v3
f_of _x = (timetravel 12) * 10/ (32- 12)

¢KS LINRPoftSY adlFdSYSyd FNRBY wnmu ¢glay a{KS o6l a LI I ¢
when thedinner bell rang. To get home she needed to run across the sand, run through the shallow lazy

river, then run across the field to home. She runs faster on land than on sand. Both are faster than
running though the knegleep water. What is the shosetime path home? On the-x space of her

world, she starts at location (1,1) and home is at (9,9). Perhaps the units atéldewters (dKm) (tenths

of a kilometer). Her speed through water is 0.75 dKm/min, through sand is 1.0 dKkm/min, and a& land i

1.25 dKm/min. The boundaries of the river are definedbyy=8.®0E | YR & I podn b non

Hose Winder(#46)¢ This function presents discontinuities to the generajisgs
well-behaved floor. It represents a storage box that winds up a garden &
on aspool. When the winding hose gets to the end of the spool, it st3
back but at a spool diameter that is larger by two hose diameters.

diameter jump causes the discontinuities. The objective is to design

storage box size and handle lengthtdnf A YA T S (KS 24y GAYRAY
the hose. .

A _ A v 4 LA A 7 pe x 3',,‘ ,”,..“»' ‘v‘ ' .{
¢KS HamMH LINRBOESY aul dSYSyu gl ay "u’,zyanno.t‘l GKFEG |

and 1.25 inch in diameter, and is wound on a 6 inch diameter spindle by a gear connection to the handle.
The hose goes through a guide, which oscillatestsiggde to make the winidig uniform. Each sweep of
the guide leads to a new hose layer, making the winddiameter 2.5 inches larger.

Originally the hose is stretched out 200 ft. To reel it in, the human must overcome the drag force of the
hose on the ground. Either a shes spindle diameter or a larger handle radius reduces the handle force
required to reel in the hose. As the hose is reeled in, its residual length is less, and the drag force is less.
But, when the first spindle layer is full and the hose moves tonénd layer, the leverage changes, and

the wind-up handle force jumps up.

After winding 200 ft. of hose, the human is exhausted. He had to overcome the internal friction of the
device, the hose drag resistance, and move his own body up and down. W®\dissign a device that

that minimizes the total human work (handle force times distance moving the handle + body work). We
also wish to keep the maximum force on the handle less than some excessive value (so that an old man
can do the winding). If ypincrease the handle radius, the force is lessened, but the larger range of
motion means more body motion work. There is a constraint on the handle radiwsinnot make the
KdzYl yQa {ydzO1ftSa aONILIS GKS 3INRdzyRO®

If you make the spindle length longer, that more hose is wound on each layer, then the hose vand

diameter does not get as large, and the handle needs less force to counter the drag. But, more turns to
wind-in the hose means more body motion.
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Further, consider the economics of manuiaing the box. The box volume needs to be large enough to
windup the hose on the spindle, and perhaps 20% larger (so that spiders can find space for their webs, |
think). Use 5 cuft. If the side is square, then defining t'
length and volume sets thside dimensions. Setting th
weight and cost directly proportional to the surface area, t
spindle length defines the cost of manufacturing and shippi
The objective function is comprised of a penalty for t
maximum force, a penalty for the cost, andenalty for the
wind-dzLJ ¢ 2 NJ ¢

The 3D view indicates a generally smooth approach t
minimum, but with local wrinkles on the surface. The lo
valleys guide many optimizers to a false minimum.

The VBA code is:
If x1 <=0 Or x2 <=0 Then
constraint = "FAIL"

f of x=15

Exit Function
End If
' HandleRadius =x1/4 'nominal, scdled®0-2.5 ft
" BoxWidth=x2/2 ‘nominal, scaléstd 05 ft
HandleRadius = 1.8 + 0.04 * x1 fdous on discontinuties'
BoxWidth = 0.6 + 0.02 * x2 'to focus on discontinuities
WindRadius = 0.25 'spindle radius 3 inches as 1/4 ft
BoxVolume =5 ‘cuft

BoxSide = Sqr(BoxVolume / BoxWidth)
If HandleRadius ©.85 * BoxSide Then
constraint = "FAIL"
f of x=15
Exit Function
End If
Area = 2 * BoxSide * 2 + 3 * BoxWidth * BoxSide  'no bottom closure
HoselLength = 200 ft
HoseDiameter = 0.1 251Inches = 0.1 ft
DragLength = HoseLength
dcircle = 0.025 ‘fraction of circumfrence
work =0
WindLength =0
Fmax =0
Do Until DragLength < 2 ‘enough increments to wind up hose, leave 2 feet of hose outside
winder
DragForce = 0.2 * DragLength '0.2 is coefficient of friction Ibf/ft of hose
HandleForce = (DragForce * WindRadius + 0.5) / HandleRadius + 1 'hose drag, torque to spin
assembly, body motion
If HandleForce > Fmax Then Fmax =ditkorce
dwork = HandleForce * HandleRadius * 2 * 3.14159 * dcircle
work = work + dwork

Pageb of 51



Optimization Applications 20160517 R. Russell Rhinehart

dlength = WindRadius * 2 * 3.14159 * dcircle ‘incremental length wound in one circle

increment
WindLength = WindLength + dlength 'total length wound on the layer
DragLength = DragLengtdlength 'length of hose left unwoound

If WindLength > (BoxWidth / HoseDiameter) * 2 * 3.14159 * WindRadius Then ‘layer full,
move to next
WindRadius = WindRadius + HoseDiameter  'update winding radius
WindLength =0 'reset wound length on new layer
End If
Loop
" f of x=10* ((Fmax/5) "2+ (Area/20) ~ 2 + (work / 100028p/ (70- 28) 'nominal
f of x=10*((Fmax/5) "2+ (Area/20) " 2 + (work / 1000)2825) / (28.45 28.25) 'to focus
on discontinuities

Boot Print in the Snow#19)¢ This represents a water reservoi
design problem, but with very simple equatioriEhe objectives r -
of a reservoir are to trap excessive rain water to preve s EoEb 5
downstream floods, to release water downstream 1 [/ =k
compensate for upstream droughts, and to provide water f
human recreational and security needs. We also want| f= i
minimize the cosbf the dam and land. The questions are hc
tall should the dam be and how full should the reservoir be ke 77
The taller it is, the more it costs; but the lower will be th [t :
probability of flood or drought impact, and the better th 3
recreational and secity features. The fuller it is kept the less =+ 2
can absorb floods, but the better the drought or recreation .
performance. On the other hand if kept nearly empty it ¢ F 7 :
mitigate any flood, but cannot provide recreation or droug
protection. The contouappears as a boot printin the snow. The
contours represent the economic risk (probability of an event times the cost of the event). The minimum
is at the toe. The horizontal axis, x1, represents the dam height. The vertical axis, x2, is the setpoint
portion of full.

A feature of this application that creates difficulty is that the bottom of the print is a plane, and
optimization algorithms that use a quadratic model (or second derivatives) cannot cope with the zero
values of the second derivative.

The VBA code is:
IfXx1<00Orx2<00rx1>100rx2>10Then
constraint = "FAIL"
Exit Function
End If
xlline=1+0.2* (x24) " 2
deviation = (x1line x1)
penalty =5 * (1 / (1 + Ex43(* deviation))) ‘logistic functionality
f of x=0.5*x20.2 *x2 + penalty + add_noise
f of x=10*(f_of x0.3)/6
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Boot Print with Pinhole(#22)¢ This is the same as Bogt
Print in the Snow, but the global minimum is entered wi
a small region on the level snow. Perhapsacorn fell

from a high tree and drilled a hole in the snow. T
difficulty is that there is a small probability of starting

the region that would attract the solution to the true
global. Nearly everywhere, the trial solution will b
attracted to the toe part of the boot print.

The VBA Code is:

Ifx1<0O0Orx2<00rx1>100rx2>10Then
constraint = "FAIL"
Exit Function

End If

xlline=1+0.2* (x24) " 2

deviation = (x1linex1)

penalty =5 * (1 / (1 + Exy¥(* deviation))) ‘logistic functionality

f of x=0.5*x20.2 *x2 + penalty + add_noise

xlmc2 = (x21.5) "2

x2mc2 = (x28.5) * 2

factor = 1 + (5 * (xXImc2 + x2me2) * Exp{4 * (xXImc2 + x2mc2))

f of x =factor*f of x + add_noise

f of x=10*(f_of x0.3)/6

Stochastic Boot Print(#20) ¢ This represents the same
water reservoir design problem as Boot Print in the Snc
however, the surface is stochastic. The OF value depend
a probability of the flood or draught event. Because of tt
each realization of the contour will yield a slightly differe|
appearance. One realization of théXview is shown. Note
that starting in the middle of the DV space on the plan
portion, a downr-hill optimizer will progressively move
toward the far side of the illustration where the spikes ar
In that region of a small reservoir kept too full or too empt
there is a probability of encountering a costly flood ¢
draught event that the resgoir cannot mitigate. Moving in
the downthill direction the optimizer may, or may not, encounter a costly event. If it does not, it continues
to place trial solutions into a region with a high probability of a disastrous event, and continues into the
bad region as the vagaries of probability generate fortuitous appearing OF values.

The VBA code is:
Ifx1<00Orx2<00rx1>100rx2>10Then
constraint = "FAIL"
Exit Function

End If
x1lline =2+ 0.2 * (x24) " 2
penalty = 0
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deviation = (x1line x1)

probability = 1 / (1 + Exf(* deviation)) 'logistic functionality
If probability > Rnd() Then penalty = 5 * probability

f of x=0.5*x20.2 *x2 + penalty + add_noise

f of x=10*(f_of x+1.25)/7.25

Tworealizations of the contour are shown here and reveal the stochastic nature of the surface, the non
repeatability of the OF value. Now, in addition to the difficulty of the planar midsection, the optimizer
also faces a stochastic surface that could lead fortuitous minimum in a high risk section of too small

a dam (xaxis) or keeping the reservoir too full or emptyais).

S b AT HHHE 4 3 .
e : R ! . e aae.
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Reservoir(#18) ¢ This is the basis for Stochastic Bo
Print, but it is a computationally timeonsuming Monte
Carlo simulation of a water reservoir. Reservoir capa
and nominal level are the decision variables.

The larger the reservoir, the greater the initial cost. C
is the objective function. So, superficially, build a sn
dam and have a small res®ir to reduce cost.
However, if the reservoir is too small, and/or it
maintained nearly full, it does not have enough capac
to absorb an ugstream flood due to exceptionally heav
rainfall, and it will transmit the flood dowstream.

Downstream flooding incurs a cost of damageu
property. But, the chance of a flood, and the magnitude of the flood depend on tftream rainfall.
So, the simulator models a dé&y-day status with a logormal rainfall distribution for a timgeriod of 20
years. (You can change the simulated time, or rain fall distribution.)

On the other side of flooding conditions are drought conditions. If the reservoir is too small, and/or
maintained with little reserve of water, an upstream drought will require stoppingwhater release,
which stops dowrstream river flow. Dowastream dwellers, recreationists, or water users will not like
this. There is also a cost related to zero destream flow.

There is a fixed cost of the structure, and a probabilistic or stochessicof extreme flood or draught
events.
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reservoirs for 20 years eaah50 realizations of the 2@ear period. You can change the number of
realizatiors.

The function is setip to return either the maximum cost for the 50 realizations, or the estimated 99%
probable upper limit on the cost. You could choose another performance indicator.

An excessively large reservoir kept half full will have amperie (to keep water flowing in a drought)
and open capacity (to absorb excess rainfall and prevent egivaam flooding), but it will cost a lot. A
smaller reservoir will have less cost. But, too small a reservoir will not prevent problems with doought
flood. So, there is an in between optimum size.

If the nominal volume is near the full mark, then the reservoir will not be able to absorb floods, but it will
have plenty of capacity for a drought. If the nominal level is too low, it will be alpleet@nt a flood, but

not keep water flowing for a drought event. So, there is also an in between setpoint capacity that is best.
The optimum setpoint for the level might not be at 50%. It depends on whether the vagaries of rainfall
make floods a biggesvent than droughts.

For any given sized reservoir, the fuller it is kept the greater is the fresh water reserve and recreational
area. So, other benefits are added as a negative penalty to the cost.

There is a fixed cost of the structure, a probakdisir stochastic cost of extreme events, and a negative
penalty for reserve and recreation benefits.

The figure is rotated to provide a good view of the surface. The optimum is in the upper left of the figure.
The lower axis is x2, the water level noalisetpoint for the reservoir. At zero the reservoir is empty, at

10 it is completely full. The nearly vertical axis on the right is the reservoir size, zero is a nonexistent
reservoir, 10 is large.

Similar to Stochastic Boot Print, this function pretseoptimizer difficulties of the planar midsection and

a stochastic surface that could lead to a fortuitous minimum in a high risk section of too small a-dam (x
axis) or keeping the reservoir too full or emptyais). It is a more realistic Monte @asimulation than
Stochastic Boot Print, but takes longer to compute, and provides the same issues for an optimizer as
Stochastic Boot Print.

The VBA code is:
twoPi = 2 * 3.1415926535
inchavg = 0.4 ‘average inches of rainfail/eve
prain = 0.25 ‘daily probability of rain
sy = Log(5 /inchavg) / 1.96 'sigma fordogmal distribution
Qinavg = prain * inchavg * 2.54 * 10~ 6 'average water volume collected/day
Useravg = 0.4 * Qinavg ‘average daily water demand by users
Qoutavg = QinavgUseravg ‘average excess water/day released downstream
Vc = (100 + x1 * 100) * 0.25 * inchavg * 2.54 * 10 * 6 'reservoir capacity, from scaled DV x1
If Vc <Orhen Vc =0

Vset = (0.3 + 0.65*x2/10) *Vc 'reservoir setpoint from scaled DV x2
Vmin =0.3*Vc 'Minimum residual capacity in reservoir, a constraint
inchflood = 12 'rain fall amount at one time that causes a flood downstream
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Qflood = inchflood *2.54* 10" 6  'volume of water/day associated with the flood rain

v = Vset 'initialize simulation with water setihainy
TotalDays =1 * 365 'simulation period in days
NRealizations = 10 ‘number of realizations simulated
MaxCost =0 'initialize total cost for any realization

For Realization = 1 To NRealizations
Cost(Realization) = 0.0001 * Vc * 0.6 ‘cost of initial reservoir
For Daynum =1 To TotalDays

If Rnd() > 0.25 Then 'does it rain?
inches =0 if no
Else

inches = inchavg * Exp(sy * S@rf Log(Rnd())) * Sin(twoPi * Rnd()))
If inches > 25 Then inches = 25  -Hogmal occasionally returns some excessive numbers.
maybe rainfall i;mot log-normally distributed

End If
Qin =inches *2.54 * 10~ 6 'incoming water volume due te lerel times area
If v <= Vmin Then Qout =0 ‘control logic for water release

If Vmin < v And v <= Vset Then Qout = Qoutavg-Mmwin) / (Vset Vmin)
If Vset <v And v <= Vc Then Qout = Qoutavg ¥get) * (Qflood Qoutavg) / (Ve Vset)

vnew = v + QinQout- Useravg ‘reservoir volume after a dayout as calculated

If vnew > Vc Then ‘override if reservoir volume would exceed capacity
Qout = Qin Useravg (Vc- V)
vnew = V¢

End If

If vnew < Vmin Then ‘override if reservoir volume would fall lower than Vmin

Qout = v- Vmin + Qin Useravg
If Qout < 0 Then Qout=0
vhew = Vv + QinQout- Useravg
End If
V = vnew
If Qout > Qflood Then ‘cost accumulation if a flood event
discount = (1 + 0.03) ~ Int(Daynum / 365) 'discount factor
Cost(Realization) = Cost(Realization) + (0.1 * ((QQ€lbod) / 10 ~ 6) ~ 2) fliscount
End If
If Qout =0 Then ‘cost accumulation if a drought event
discount = (1 + 0.03) ~ Int(Daynum / 365)
Cost(Realization) = Cost(Realization) + 1 / discount
End If
Next Daynum
If Cost(Realization) > MaxCost Then MaxCost = Cost(Realization)
Next Realization
costsum =0 'determine average cost per realizaton
For Realization = 1 To NRealizations
costsum= costsum + Cost(Realization)
Next Realization
AvgCost = costsum / NRealizations
cost2zsum =0 ‘determine variance of realizgbearelaization cost
For Realization = 1 To NRealizations
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cost2sum = cost2sum + (Cost(Redlzg - AvgCost) * 2
Next Realization
SigmaCost = Sqgr(cost2sum / (NRealizatid)¥
f_of x = AvgCost + 3 * SigmaCost 'Primary &tgma, 99.73 probable upper limit

f of x=f of x0.2*x2 '‘Secondary OF addsefitg(negative penalty) for high setpoint level
f of x=10* (Sqr(f_of xR)/(15-4) + add_noise 'scale factor for display convenience
" f of x=MaxCos0.2 * x2-4 'OF based on max cost for the several realizations

If Vset < Vmin Or Vset > 0.95 * Vc Or Vc <= 0 Then 'hard constraint
constraint = "FAIL"
End If

/| K2y 3 +dzQ& b 2 MM)cChong SaweSasstuders
exploring various regression objective functions as part of
Optimization Applicions course, and created this tes
problem for a best linear relation to fit 5 data point
representing contrived noisy data. The points are (0,1), (O
(1,3), (1,1), and (2,2). X1 and x2 are scaled to represent
slope and intercept of the linear odel. The OF value i
computed as the sum of squared normal distances from the |
to the data (as opposed to the traditional vertical deviatic
least squares that assumes variability in thengasurement

only).

The minimum is at about x1=8, x2=2lwe near valley. The function is relatively well behaved, and even
though it represents a sum of squared deviations, it is not a quadragic shape. Further, trial solutions in
the far portion of the valley send the solution toward infinity .= EHT bk 0 ®

The VBA Code is:

ml1ll=05*x%t3 'coefficients adjusted to fit better on x1, x2 display scale
b11=0.3*x2+0.5
Sum=0

Sum = Sum + ¢Im11 *0-b11)~ 2  ‘first of 5 pairs of X,y data y=1, x=0

Sum = Sum + (Zn1l *0-bll) "~ 2

Sum =Sum + @nll * 1-bl1) "~ 2

Sum = Sum + (Im11 * 1-bl11) ~ 2

Sum = Sum + @nll * 2-pb11) "~ 2

f of x=Sum/(1+mll1"22 'sum of vertical distance squared converted to normal d"2
W F @ & Biyx=1 H'0.021*dhck x2F+ 3) A 2) 'OF adjusted for display appearance and to keep
solution in bounds

If x1 <0 Or x2 > 10 Then constraint = "FAIL" 'there isgaapdffattractor seems to be at
infinity, + infinity
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Windblown (#61) ¢ A person wants to travel from Poin
A to Point B, and chooses two linear paths from A to P¢
C then C to B so that the cumulative impact of the wi
is minimized. Perhaps he is not wearing his motorcy
KStYSGiX | yR R2Say Qséedag. yhé
DVs are the x1 and x2 coordinates for point C. The w
blows in a constant (not stochastic) manner, but the wi
velocity and direction change with location. The tray
velocity is constant. If point C is out of the high win
area, but &r away, the travel time is high and the lo
wind experience persists for a long time. If point C is
the line between A and B, representing the shorte
distance path, and lowest time path, it takes the traveler

into the high wind area, and even thoutte time is minimized, the cumulative wind damage is high. The
impact is due to the square of the difference of the wind and travel velocity. Moving at 25 mph in the
same direction as a 25 mph wind is blowing is like being in calm air. But, trangliegopposite direction

is like standing in a 50 mph wind. The objective is to minimize the cumulative impact, the integral of the
squared velocity difference along the@8 path.

The function provides some discontinuities as evidenced by the kirthe contours. And, there are two
minima, the global is to the frodeft of the lower contour, and the secondary is to the back right. Both
minima are in relatively flat spots.

Suresh Kumar Jayaraman helped me explore this simulation of a pagfndhtdhe VBA code is:
xc=x1 'Optimizer chooses point C

yc =x2
xa=2 'User defines points A and B
ya=4
xb=9
yb=6
N =200 ‘'Discretization number of intervals
velocity = 1.5 'Velocity of travelle
wind_coefficient = 0.1 '‘Coefficient for velocity of wind
‘from Ato C
xi=xa 'xiandyi are locations along the path
yi=ya
D1 = Sgr((xaxc) 2 + (yayc) ~ 2)  'total path distance
dD1=D1/N ‘path incremental length
time_interval = dD1 / velocity ‘travel time along path increment
dxil = (xe xa) / N ‘incremental x increments
dyil = (yecya)/N 'incremental y increments
If xc = xa Then
vx =0 'traveler x velocity
Else
vx = velocity * (1 + ((yoya) / (xc-xa)) * 2) 0.5
End If
If yc = ya Then
vy =0 ‘traveler y velocity
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Else
vy = velocity * (((xexa) / (yc-ya)) * 2 + 1) 20.5
End If
im1=0 'integral of impact on path 1

For Path_Step =1 To N
If D1 = 0 Then Exit For
Xi = xi + dxil
yi =yi + dyil
wx = fwind_coefficient * xi * 2 * yi) / Sqr((xi + 0.1) 2 + (yi + 0.1) * 2)
wy = (wind_coefficient * Xi yi * 2) / Sgr((xi + 0.2) 2 + (yi + 0.1) * 2)
lim = Sgr((vxwx) * 2 + (vywy) * 2)
iml =iml + lim
Next Path_Step
im1 =iml * time_interval 'total impact scaled by time
‘from Cto B
Xi = Xc
yi=yc
D2 = Sqr((xexb) * 2 + (yeyb) * 2)
dD2=D2/N
time_interval = dD2 / velocity
dxi2 = (xb xc) / N
dyi2 = (ybyc) /N
If xc = xb Then
vx=0
Else
vx = velocity * (1 + ((ybyc) / (xb-xc))  2) 0.5
End If
If yc = yb Then
vw=0
Else
vy = velocity * ((xbxc) / (yb-yc)) 2 + 1) 20.5
End If
im2=0
For Path_Step=1To N
If D2= 0 Then Exit For
Xi = Xi + dxi2
yi =i + dyi2
wx = wind_coefficient * xi * 2 * yi) / Sqr((xi + 0.1) * 2 + (yi + 0.1) * 2)
wy = (wind_coefficient * xi * yi ~ 2) / Sqr((xi + 0.1) * 2 + (yi + 0.1) * 2)
lim = Sqgr((vxwx) ~ 2 + (vy wy) " 2)
im2 =im2 + lim
Next Path_Step
im2 = im2 * time_interval
f of x=iml+im2
f of x=10*(f_of x18)/(35-18)
f of x=f of x+ add_noise
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Integer Problem(#33)¢ This simple example represent”
a classic manufacturing application. Minimize a functi
(perhaps maximize profit) of DVs x1 and x2 (perhaps
number of items of products A and B to make), subject
constraints (perhaps on capacity), and reqgrx1 and x2
to be integers (you can only sell whole units).

There are many similar examples in textbooks.

The attributes of such applications are the lev
discontinuities (cliffs) as the integer value changes, ¢
the flat spots over the range of Dxlues that generate
the same integer value. The surface is nonanalgtic

R. Russell Rhinehart

derivatives are either zero or infinity. This illustration illustrates the constraint regions with a high OF

value.

The VBA Code is:
x11 = Int(x1)
x22 = Int(x2)
f of x=11-(4*x11 +7 *x22)/ 10
If 3*x11 + 4 *x22 > 36 Then constraint = "FAIL"
If x11 + 8 * x22 > 49 Then constraint = "FAIL"

Reliability #56)¢ ¢ KA a | LILJX AOIF A2y

choice of the number and size of parallel items for syst¢
success. Consider a bank of exhaust fans needed to |
building air refreshed, as | had to when | worked in indust
The fans are operating iparallel. If one fails, air quality
deteriorates. If there are 3 operating fans and one spa
when one fails, the spare can be placed online. T
increases reliability of the operation, but increases the c¢
of the fan assembly by 4/3. Even so,ahiliity is not perfect.
There is a chance that two fans will fail, or three. Perha
have three spares. Now, the cost is 6/3 of the original 1

10

station. In either case, the cost needs to be balanced by the probability of the fan bank not handling the
load. Alternately, it could be balanced by risk (the financial penalty of an event, times the probability that
an event will happen).

A clever cost reduction option is to use smaller capacity items, but more of them. For example, if there
are 4 operatingdans, each only has to have % of the capacity of the original three. Using the common
6/10" power law for device cost, the smaller fans each cost {36 the original three, but there are 4

of them. So, the cost of the zespare situation with 4maller fans is higher than the cost of the 3 larger
fans. The ratio is 4* (3/25 /3 = 1.12. However, if three spares are adequate, the cost of 7 smaller fans

is lower than the cost of 6 larger fans. The ratio is 7* (3/46 = 0.98.

The optimzation objective is to determine the number of operating units and the number of spare units
to minimize cost with a constraint that the system reliability must be greater than 99.99%.
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The realizable values of the DVs must be integers. This createsuflaces with cliff discontinuities
(derivatives are either zero or infinity), and the constraint creates infeasible DV sets.

The VBA Code is:
N =3+ Int(8 * x1 /10 + 0.5) 'total number of components
M = Int(5 * x2 / 10 + 0.5) 'number of operating components needed to meet capacity

p=0.2 'probability of any one component failing
g=1-p 'probability of any one component working
IfM >N Then

f of x=0

constraint = "FAIL"
Exit Function

End If
If M >0 Then

f of x=N*(@/M)"0.6
Else

f of x=0

constraint = "FAIL"
Exit Function

End If

P_System_Success =0

Forim =0 To NM
P_System_Success = P_System_Success + (factorial(N) / (factorial(im) * faetam@J(N(p ~ im) *

(@ " (N-im))

Next im

If P_System_Success < 0.999 Then
f of x=0
constraint = "FAIL"
Exit Function

End If

The factorial function is:
factorial = 1
If NUM =1 Or NUM = 0 Then Exit Function
For iNUM =2 To NUM
factorial = factorial * INUM
Next iINUM
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Frog (#2) ¢ | generated this function as a final project for =
freshmanlevel computer programming class when | was a P
candidate at NCSU. It included nested loops and conditio
to assign text symbols to array variables, then printing t
array. Studerg would know when they have the right answe
The eyes represent equal global optima. There are also th
minima in the mouth. To add difficulty for an optimizer, the
is an oval constraint, a forbidden area, surrounding the eye
the upper left. Dwn-hill type optimizers get stuck on the
constraint northwest of the eye. The face is also relatively
tricking some convergence criteria to stop early.

0

2
8 4 6 7 I
8 9
10

The VBA Code is:

f of x=2+1*(((xd5) " 2) + ((x25) * 2)) * (0.5 Exp(f((x1- 3.5) *2))- _
((x2-7) "~ 2))) * (0.5 Exp(€((x1-6.5) * 2)) _
((x2-7) "~ 2))) * (0.5 + (Abs(Sar(((x3) * 2) / ((x2 11) * 2))))} _
(Exp€(Sar(((xE5) * 2) + ((x211) ~ 2))-7) " 2)))

If (x1-3.5) "2+ (x27) "4 <= Zhen

constraint = "FAIL" 'Hard constraint approach
Else

constraint = "OK"
End If

Hot and Cold Mixing(#36) ¢ This function represents the
control action required to meet steaedstate mixed

temperature and flow rate targets of 70 C and 20 kg/min frg
the current conditions of 35C and 8 kg/min. The DVs are
signals to the hot and cold valves. 4

Hot and cold fluid are mixed in line, and the objective is
determine the hot and cold flow cordl valve positions, 0

and @, to produce the desired mixed temperature and tot
flow rate. The valves have a parabolic inherent characteris
and identical flow rate vs. valve position response. Tne

control algorithm is the Generic Model Control (GMaw with a steadgtate model, and the desire to

,5[;75910

o122

target for 20% beyond the biased setpoint, Kc=1.2. There is uncertainty on the model parameters of the

supply temperatures, measured flow rate and temperature, and valve Cv. The controller objettdive is
determine a and @ values that minimize the equa&bncern weighted deviations from target at steady
state.

The first term in the OF relates to themperature deviation, and the second term the flow rate deviation.
The deviations are weighted by the equaincern factors, #and . The numerator of each term starts
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with the calculated target value (beyond the setpoint), and subtracts from ittbdeled value. The OF
is the equaiconcernweighted, sum of squared deviations.

The VBA code is:
Ifx1<=00rx1>100rx2<=00rx2>10Then
constraint = "FAIL"
Exit Function

End If

0l1=10*x1 'hot valve positién,

02=10*x2 ‘cold valve position, %

SetpointT =70 'Celsius

add_noise = Worksheets("Main").Cells(8, 12) * qgr(Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
FromT = 35 * (1 + add_noise) 'Celsius

SetpontF = 20 'm”~3/min

add_noise = Worksheets("Main").Cells(8, 12) * qgr(Log(Rnd())) * Sin(2 * 3.14159 * Rnd())
FromF =8 * (1 + add_noise) 'm”3/min

add_noise = Worksheets("Main").Cells(8, 12) * qdfr(og(Rnd())) Sin(2 * 3.14159 * Rnd())

HotTin = 80 * (1 + add_noise) ‘Celsius

add_noise = Worksheets("Main").Cells(8, 12) * qdfr(og(Rnd())) * Sin(2 * 3.14159 * Rnd())

ColdTin =20 * (1 + add_noise)  'Celsius

add_noise = Worksheets("MdinCells(8, 12) * Sq * Log(Rnd())) * Sin(2 * 3.14159 * Rnd())

ValveCv = 0.0036 * (1 + add_noise) 'm”3/min/%"2

EC4T =0.15 ‘Celstis”(

EC4F =1 (m"3/mi))"\(

f_of x=ECAT * (1.2(SetpointT- FromT) + FromI(HotTin * 01~ 2 + ColdTin*02"2) /(012 + 02 »
2)) " 2 + ECAF * (1.2 * (SetpoirfFromF) + FromFV/alveCv * (01 2+ 02" 2)) " 2

f of x=1 of x/150

This is a simple function, but provides substantial mésdion to a steepest descent optimizer that starts

in the far side. It has steep walls, but a low slope at the proximity of the minimum. Some optimizers
starting in the proximity of the optimum do not make large enough DV changes, and convergenca criteri
can stop them where they start.

With no uncertainty on model values, the contour of th®2earch or 01 and 02 appears as the left figure
below, which is interesting enough as a test case for nonlinear optimization. However, with a 5% nominal
uncertainty, the center figure, the contours are obviously irregular, and tBeot of OF vs. DVs, the

right hand figure, reveals the irregular surface.
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Curved Sharp Valley@#8)¢ This is a contrivance to provide
simple function wih a slope discontinuity at the globa
minimum (in the valley near the lower right of the figure, b
in the interior, at about the point x1=8, x2=3). At th
minimum the slope of the valley floor is low compared to tk
side walls. This means that from gogint in the bottom of
the valley there is only a small directional angle to move t
lower spot. Nearly all directions point up hill. Also the val
is curved, so that once the right direction is found, it is not t
right direction forthenextmow® a2 aid 2LJGAY
they have converged when they are in the steep valley, and

multiple runs will lead to multiple ending points that trace the valley bottom. The surface has another
minimum in a valley in the upper right, and a well behawedl minimum up on the hill in the far right.

Both the Parameter Correlation and the ARMA Regression function have a similar feature. This
exaggerates it, and has a very simple formulation.

1¢€

The VBA Code is:
f of x=0.015* (((x48) "2+ (x26)" 2) + _
15 * Abs((x:2-0.001 *x2 " 3) * (x24 + 0.001 * x1 " 3) _
500 * Exp{((x1-9) " 2 + (x2 9) * 2)))

Parallel Pumpg#41)¢ This represents a redundancy desic

I LILX AOFGA2Y FNRBY | Hamm | a a!

has three identical centrifugal pumps in parallel in a sin
process stream. The pumps run at a constant impe
speed. They wish to have a method that chooses how m
pumps should be operating, and what flow rate should
through each operating pumpto minimize energy
consumption for a given total flow rate. The inlet and outl
pressures on the overall system of pumps remain
constant, but not on each individual pump. The individu
flow rates out of each pump are controlled by a flow contr
vahe.
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