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Preface 
 
One can argue to not teach students to derive or invert Laplace, or z-, or frequency transforms in the 
senior level process control course.  In my 13-year industrial career, I never used mathematical 
transforms; but I tuned controllers and filters, designed a ratio control system, decided what variables 
needed to be controlled, sized an orifice and chose its dP cell range, did trouble-shooting, chose DCS and 
device manufacturers, assessed patterns in SPC charts, and analyzed process attributes.  Further, mostly, 
the daily operation of controllers (tuning and switching modes) was done by technicians, not engineers.  
When I had the privilege to tune a controller, I followed a heuristic procedure, and did not use 
mathematical transforms.  There are many process control topics that are more important to career skill 
than the ability to use the partial fractions method to invert a Laplace transform.  The process control 
course should not reject the practice-relevant aspects of process control to become an advanced 
mathematics course. 
 
On the other hand, Laplace transfer functions and block diagram notation are efficient methods to 
describe dynamic behaviors, and are often the representation of the algorithms in filtering and control as 
presented in vendor bulletins and instruction manuals.  They have become our historical legacy language 
of representing process dynamics.   Accordingly, a control engineer, should understand what transfer 
functions mean; especially relating to FOPDT models, filtering, PID controller options, and feedforward 
methods.    
 
Further, transfer function analysis has provided the theoretical underpinning of many control techniques 
and remains an important analysis and communication tool for those of us doing research in dynamic 
systems.  So, surprisingly to most in process control practice, those in research or development actually 
think Laplace transform notation is useful. 
 
This four-part monograph is how I presented the Laplace transform topic in the process control course to 
chemical engineering seniors.  The first part is about deviation variables, the second is about the Laplace 
transform and relates transfer functions to operations, the third part is how to interpret block diagrams, 
and the fourth part is for those wishing to convert transfer functions into code to simulate a process or a 
controlled system.  Hopefully, this will have utility to my readers. 
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Part 1 Deviation Variables 
 
 
Introduction 
 
Mathematically, a Laplace transform is represented as the integral from time zero (now) to forever into 
the future (infinity) of the signal weighted by the exponential term 𝑒−𝑠𝑡. 
 

𝑌(𝑠) = 𝑦̂(𝑠) = ∫ 𝑒−𝑠𝑡′𝑦′(𝑡′)𝑑𝑡
𝑡′=∞

𝑡′=0
′      (1.1) 

 
Do not look at Equation (1.1) as mathematics.  If you do, you’ll revert to your Calculus II course perspective, 
and become mentally misdirected.  This monograph is not about calculus.  We’ll understand the meaning 
of the equation in Part 2 of this series, but first, you must understand what the symbols represent. 
 
Here, the symbol 𝑦 represents the process variable (PV) value.  However, 𝑦′ is in the equation, not 𝑦.  The 
𝑦′ represents the process variable (PV) deviation from its initial value; so, 𝑦′ starts with a value of zero.  In 
the equation, it is explicitly indicated as a function of time, 𝑦′(𝑡′), also a deviation.  The deviation notation 
is essential to simplifying the Laplace transfer functions, but it can cause a conceptual barrier; so this first 
part is about deviation variables.   
 
 
Deviation Variables 
 
To help explain deviation variables, consider that your car is stopped, facing east, and then it accelerates 
to 50 mph.  Its initial speed was zero.  Or was it?  If one considers the rotation of the Earth, the initial 
speed of a stopped car may have been about 1,000 mph (near the Equator), and the car then accelerated 
to 1,050 mph.  Claiming that the speed is 50 mph is grounded in a deviation from the Earth’s surface 
speed.  Facing west, it would have decelerated to 950 mph.  Of course, the Earth is moving as it rotates, 
so the actual speed relative to something is different yet.  However, we are comfortable considering speed 
as a deviation from the Earth surface, as if it were a stationary reference. 
 
As another example, if the PV is temperature and starts with a value of 32 oF, one could equivalently 
consider that it is starting at 0 oC.  But, is 0 oC really zero, or is that temperature 273.15 oK?  Both the 
Fahrenheit and Centigrade scales are deviation variables.  The height of a desk is about 32 inches, but this 
is relative to the floor, not sea level.  At 980 feet above sea level, my desk at home on the first floor has a 
height of 982.67 feet, but downhill a bit in my school office, and up on the 4th floor, its height is about 960 
ft.  Temperature and level of material in a tank, are deviations from a user-defined reference.  But, in 
fitting a chair for my desk, no one would say that the height of my desk is 960 ft. 
 
As one final PV example:  You are familiar with the difference between absolute pressure and gage 
pressure.  The steam in a 50 psi line (gage pressure, psig) actually has about a 64.7 psia (pressure absolute) 
value.  The 64.7 value defines the steam properties.  The gage pressure is a deviation from the atmospheric 
pressure.  But, from day to day, as the barometric pressure changes, the same 50 psig, might represent 
66 psia on one day and 63 psia on another.  The reference for the psig deviation is not a constant.  Similarly, 
there is no need for you to fix your reference value of the PV to a universal absolute.  Regardless of the 
initial value at the time, you can define the scale, translate the axis, to start with a value of zero.   
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For transforms and transfer functions, again for convenience, to simplify them, we’ll also require that 
𝑦(𝑡 = 0) be at an initial steady state.   
 
Time, 𝑡′, is also a deviation variable.  “Now” could be considered 3:12 pm on October 7th 2019, instead it 
could be called 15:12 hours (pretending midnight was zero), or 2019.76712… years A.D., or we could 
reference the time to the big bang.  For instance, if the race ended after the winner crosses the finish line 
at 10:37:16.492 am, we call the winning time as 43.2 seconds, because we consider that the race started 
at time zero.   The event starts at time zero. 
 
 
Example 1.1 
 
I think that the concept of deviation variables is often missed by students when they are trying to learn 
the language and models of control.  So, here is an example using a traditional exercise of generating a 
first-order plus deadtime (FOPDT) model, which is commonly used as a simple representation of process 
behavior for tuning feedback and feedforward controllers and decouplers.   From an initial steady state, 
the concept is that the process is influenced by a step-and-hold influence.  The influence is usually the 
controller output, but it might be a disturbance.  Figure 1.1 shows the idealization of influence, 𝑢, and 
Figure 1.2 shows the ideal PV response, 𝑦.  For clarity of concept, the signals are noiseless.  
 
 

 
Figure 1.1 – Ideal step-and-hold influence from an initial steady state 
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Figure 1.2 – Ideal FOPDT response from an initial steady state 
 
 
Note that the time axis on both figures goes from zero to 100 seconds.  However, the step-and-hold event 
occurred at a time of 25 seconds.  It did not occur at time zero.  In actuality, the zero time on the axis 
might have been at 2:31 pm when data collection started.  Regardless of when data collection starts, we 
will reference the deviation time, 𝑡’, from the start of the event, in this case the step change in the 
influence.   
 
Further, in Figure 1.1, the initial steady state value of the influence was 53.6 % and it changed to 68.4 %.  
In contrast, Figure 1.3 shows the deviation variable representation of the influence.  In deviation variables, 
we will use the initial steady state value as the reference, and claim that the influence changed from zero 
to a value of 14.8 %’ (14.8 = 68.4 - 53.6), and that it happened at a time of zero.  Note that the magnitude 
of the change was 14.8 %, but to explicitly indicate it is relative to the initial value, I used the symbol %’ 
for its units.         
 
 

 
Figure 1.3 – Figure 1.1 in deviation variable notation 
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Figure 1.4 – Figure 1.2 in deviation variable notation 
 
 
In Figure 1.2, the PV response rose from 102.9 oF to 134.1 oF.  But, in deviation variables from its initial 
steady state value, it rose from zero to 31.2 oF’.  The temperature is not a bit below freezing; so, rather 
than using oF units, to explicitly indicate the PV is a deviation, I use oF’.  Figure 1.4, reveals the PV in 
deviation variables.   
 
Looking at Figure 1.2, one might decide that the PV settling time is 80 seconds, which is about when it 
stopped rising.  However, it did not take the PV 80 seconds to settle from the influence at 25 sec.  Figure 
1.4 more clearly represents the settling time as about 55 seconds.   
 
Additionally, the final values of the deviation variables are 14.8 and 31.2 as shown in Figures 1.3 and 1.4, 
not 68.4 and 134.1.  Since transformed variables are based on deviation variables, in un-transforming 
notation, one must convert the deviation variable to the real variable, by adding the reference value.  
Again, this shift is often not included in a novice student’s analysis.  
 
 
A Perspective on Modeling  
 
Often, we use FOPDT models to characterize a process response.  However, real processes do not have 
ideal FOPDT response as implied in Example 1.1; and further, the influences are not ideal step-and-hold.  
When we describe a process with a FOPDT model, it is an attempt to make a FOPDT response best fit the 
data.  The best FOPDT model to represent a real PV response is shown in Figure 1.5.  The influence is the 
thin line that makes several steps and appears similar to a city skyline, and accordingly termed a skyline 
function.  It does not make one step-and-hold.  Most new influence steps happen before the response 
settles to its new value, and the jump-to value is random within a desirable range.  The influence is 
attached to the right vertical axis.  The dots represent experimental data, and the line that somewhat goes 
through it is the FOPDT response.   Both PV response and FOPDT model are attached to the left vertical 
axis. 
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Figure 1.5 – Real FOPDT modeling 
 
 
Note that the model does not exactly match the data.  There is no rule requiring Nature to comply with 
human artifices.  Just because we choose to mimic reality with a FOPDT model does not mean that it is 
the right model.  In this case the process is nonlinear, the gain (how far it moves) in one PV range is 
different larger than in the other PV range, the valve has sticktion so the influence is not exactly the 
controller output.  Lastly, there seems to be a wild disturbance progressively shifting the process values 
to higher values over the duration of the experiment.  By contrast, the model pretends the gain is linear, 
the influence is what we think it should be, and there is no uncontrolled disturbance.   
 
In general, the responses are not free of a collection of nonidealities (noise, disturbances, sticktion, 
nonlinearity, etc.); so, a single step-and-hold experiment will not represent the general behavior.  Further, 
a single step-and-hold presumes starting from an initial steady state and holding the new value long 
enough to attain a new steady state.  Waiting long enough pushes the process away from a desired value 
for an extended period.  Accordingly, it is best to use a skyline influence, averaging about the nominal 
value and not waiting for a steady state, and fit the data over a series of shorter step-and-hold durations.   
See the article “FOPDT Modeling”, Develop Your Potential Series in CONTROL magazine, November 2016, 
Vol. XXIX, No. 11, pages 46-48.  I have made FOPDT software available to the public on my web site: 
www.r3eda.com. 
 
 

Part 2 Laplace Transforms 
 

 
Introduction 
 
Perhaps the greatest value of Laplace transforms is in simplifying the mathematical analysis of a system 
of differential and integral equations by converting them to algebraic relations.  Although that is largely 
irrelevant to a practitioner, Laplace transforms have provided the theoretical underpinning of many 
control techniques and have become the standard representation of process and controller dynamics.  
They are useful as a short-hand notation, and a control technologist should be able to read the language.  
This second part of the monograph explains the Laplace transform and relates transfer functions to 
common dynamic behaviors.   
 

http://www.r3eda.com/
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Mathematically, a Laplace transform is represented as the integral from time zero (now) to forever into 
the future (infinity) of the signal weighted by the exponential term 𝑒−𝑠𝑡.  Duplicating Equation (1.1): 
 

𝑌(𝑠) = 𝑦̂(𝑠) = ∫ 𝑒−𝑠𝑡′𝑦′(𝑡′)𝑑𝑡
𝑡′=∞

𝑡′=0
′      (2.1) 

 
Again, do not look at Equation (2.1) as part of your Calculus II course.   
 
Again, it is important to understand what the symbols represent.  The variable 𝑡 represents time and 𝑦 
represents the process variable (PV).  Again, however, they are indicated by 𝑡′ and 𝑦’ in the equation.  
These are deviation variables.  𝑡’ is the time after the initiation of an event that causes 𝑦 to change, and 
𝑦’ is the PV deviation from its initial steady state value. 
 
Either the capital 𝑌 or the y-hat 𝑦̂ symbol represent the Laplace transformed variable.  As, I’ll show, 𝑌 and 
𝑦̂ are not functions of time, even though the signal changes in time.   Both 𝑌(𝑠) and 𝑦̂(𝑠) depend on the 
value of the coefficient 𝑠; so, in the equation, 𝑌 and 𝑦̂ are explicitly shown as functions of 𝑠, not 𝑡. 
 
The argument of the exponential must be dimensionless.  Accordingly, the units of the coefficient 𝑠 are 
the reciprocal of the units on time, 𝑡’.  If you choose time in minutes, then the units on coefficient 𝑠 are 
min-1.  If time is in seconds, then the units on coefficient 𝑠 are sec-1, or s-1, an unfortunate nomenclature 
that can create confusion between the symbols representing the coefficient and its units.   
 
 
Interpreting the Equation 
 
I am going to provide a geometric interpretation of Equation (2.1) because it illustrates several aspects, 
not because it is how a transfer function is obtained.  The aspects are that 1) 𝑦̂ is a function of 𝑠, 2) not 
time, and 3) the units on 𝑦̂ have no physical meaning.  The term 𝑦′(𝑡) is the process signal that changes 
in time, as a deviation from its initial value.  Figure 2.1 is an illustration of a temperature that rises in an 
S-shaped manner from an initial steady value of 87.3 oF.  It approaches a final value of 108.6 oF, but since 
the graph is finite, it never quite gets there.   It happens to be an ideal second-order response (with time-
constants of 14 and 16 seconds) to an ideal step-and-hold influence.   Notice that the graph is in deviation 
variable terms – both the response and time start with a value of zero, and 𝑡′ = 0 is the time at the 
initiation of an event that causes 𝑦 to change from its initial steady state value.  So, the signal in the graph 
is approaching 21.3 oF’ (=108.6-87.3).  
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Figure 2.1 – A Second-order response in deviation variables 
 
 
The term 𝑒−𝑠𝑡′ is a simple exponential decay.  When 𝑡′ = 0 its value is 𝑒−𝑠0 = 𝑒−0 = 1 regardless of the 
choice of the value of coefficient 𝑠.  And, when 𝑡′ = ∞ its value is 𝑒−𝑠∞ = 𝑒−∞ = 0 regardless of the 
choice of the value of coefficient 𝑠.   Figure 2.2 indicates the exponential decay for several choices of the 
coefficient 𝑠.  Notice that regardless of the 𝑠-value, each curve starts at 1.0 and tails toward 0.0.     
 
 

 
Figure 2.2 – Illustration of an exponential decay for several s-values 
 
 
The argument of the integral in Equation (2.1) is a product of terms, 𝑒−𝑠𝑡′𝑦′(𝑡′).  This is easily computed.  
Choose a value for the coefficient 𝑠, say the middle curve of  𝑠 = 0.05 s-1.   At a time of 40 seconds the 
value of 𝑒−𝑠𝑡′ is 0.135 (dimensionless) and the value of 𝑦′(𝑡′) from Figure 2.1 is 16.1 F’ so the product is 
2.18 F’.   Figure 2.3, indicates how the product 𝑒−𝑠𝑡′𝑦′(𝑡′) changes with time, when the value of 𝑠 is 0.05 
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s-1.   The integral argument value, the product value, is the solid line, which is attached to the left vertical 
axis.  The exponential term is dimensionless, so the product retains the units of the process variable.   
 
 

 
Figure 2.3 – Integrand and Integral 
 
 
The integral symbol, simply means the area under the product curve with respect to time, from the start 
(at zero) to the end.  The end would be at time of infinity.  The integral is an area, a product of the height 
times time.  Note: The units of the area are not the same as the process variable.  If the PV represents 
temperature in oF and time is represented in seconds, then the integral has the units of Fahrenheit’-
seconds’ (F’s’).  Although both time and temperature have a physical meaning, there is no physical 
meaning to the transformed variable, 𝑌, or its units.  The dashed line in Figure 2.3 is how the integral 
increases with time (with 𝑠 = 0.05 s-1).  For example, the area under the solid curve from 𝑡’ = 0 to 𝑡’ =
60 is about 120 F’s’, so the value of the dashed curve at 𝑡’ = 60 is about 120 F’s’.   The value of the Laplace 
transform with 𝑠 = 0.05 s-1 is about 140 F’s’.   
 
The 𝑠-coefficient could have any value.  And, for each value, there is a different total area, asymptotic 
value of the area at 𝑡′ = ∞.  The total area is represented by the capital 𝑌, and depends on the value of 
𝑠.  The value of the total area can be graphed w.r.t. 𝑠 as in Figure 2.4.   
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Figure 2.4 – The value of Y(s) w.r.t. s for a second-order response 
 
 
Note:  In Figure 2.4, at 𝑠 = 0.05 s-1, the total area is about 140 F’s’, consistent with the dashed line in 
Figure 2.3. 
 
The 𝑌(𝑠) w.r.t. 𝑠 graph is unique to the 𝑦(𝑡) response, but it is not the 𝑦(𝑡) response, it does not have 
the same units, and it has no physical meaning.  Like a fingerprint, it is unique to the person, but it is not 
the person.  The fingerprint does not provide facial or voice recognition, nor have the same 
characterization of the person it uniquely represents. 
 
In this case, the equation for the fingerprint, for the second-order trend in Figure 2.4, which is the Laplace 
transform of the PV trend in Figure 2.1 can be analytically derived.  It is: 
 

𝑌(𝑠) =
21.3

(14𝑠+1)(16𝑠+1)𝑠
        (2.2) 

 
Note: The asymptotic value of 21.3 and the time-constants of 14 and 16 are both explicitly revealed within 
the s-functionality.  The algebraic pattern of the Laplace transform indicates the second order response, 
and the coefficients in the transform are the specifics. 
 
The 𝑌(𝑠) function is a unique fingerprint to the 𝑦(𝑡) response, and can be represented by a formula as 
well as the graph of the function.  For a ramp change in a PV (in which 𝑦(𝑡′) = 𝑎 + 𝑏𝑡′), the initial value 
is 𝑦(𝑡′ = 0) = 𝑎, the y-deviation is 𝑦′(𝑡′) = 𝑏𝑡′, and the Laplace transform of 𝑦′(𝑡′), the unique 
fingerprint of the ramp, the analytical integration of Equation (2.1), is 𝑌(𝑠) = 𝑏/𝑠2.  Long ago in calculus 
class, you might have been able to derive that.  But, there is no need now; unless, like doing Sudoku 
puzzles, you enjoy the intellectual exercise of analytically solving the integral.  Noteworthy, is that the 
numerator in the Laplace representation is the ramp rate of change, 𝑏, and the 𝑠-squared functionality in 
the denominator is just another language for “ramp”.  If you see 𝑏/𝑠2 read it as “The PV makes a ramp 
change at a rate of b from its initial value.”    
 
The Laplace transform is just another language representation.  If this English line, “The PV makes a ramp 
change at a rate of 𝑏 from its initial value” was written in Spanish or Chinese or Laplace, it would represent 
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the same trend.   If you understood the language, you could sketch the trend.  Alternately, if you saw a 
graph of the trend, you could describe it in English, or Laplace, or any language of communication. 
 
Some 𝑦(𝑡) responses are relatively simple, and the corresponding 𝑌(𝑠) equation can be “easily” obtained 
by analytical solution of Equation (2.1).  They’ve already done it, and placed the formulae in tables, so you 
don’t have to re-do it. 
 
 
Transfer Function 
 
The presentation above describes the Laplace transform of a signal, but it does not indicate why the signal 
was changing.  For control, of more importance is the Laplace transfer function, which relates how one 
signal reacts to another.  Consider a relation such as 𝑦(𝑡) = 𝑓(𝑢(𝑡)), meaning that 𝑦 is a response and 𝑢 
is the influence.  The response behaviors have names such as gain, or integrating, or first-order; and time-
domain (calculus and differential equation) representations that match the Laplace transfer function 
notation.   Although the 𝑦-response depends on the input behavior, the function of how 𝑦 responds to 𝑢 
is the same whether 𝑢 makes a step up, or down, or a ramp or a sinusoidal change.    
 
The transfer function describes the 𝑦 response to any influence event pattern.  In the words of Carlos A. 
Smith, “… it tells us how the input (influence) affects, or transfers, to the output.”  
 
 
Key Fingerprints 
 
Table 2.1, reveals some key transfer functions.  You should recognize the patterns, and what they mean.  
The left column is an English language description and some commentary.  The middle column reveals the 
time domain (algebraic or differential equation) representation of the operation, and an illustration.  In 
the illustration the dashed line is the influence, 𝑢′, and the solid line is the process response, 𝑦′.  The 
rightmost column reveals the Laplace Transfer Function of the operation, and includes the equation 
explicitly revealing what is the influence and what is the result.   
 
Note: The time domain equations explicitly reveal that the variables are deviation variables.  The transfer 
function representation, does not explicitly indicate deviation variables, but it is based on them. 
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Table 2.1 – Some common transfer functions 

Name Time Domain Equation Laplace Transfer 
Function 

 
Scaling, or Gain, by the 
multiplier factor K. y does 
exactly the same thing as u at 
the same time, but it is 
attenuated by the factor K.  K 
may change both units and 
value, like a conversion of oC to 
oF.  K may have a negative sign, 
indicating that y does exactly 
the opposite of u.   Read it as “y 
is the scaled u,” or as “y is a 
ratio of u.” 
 

 
𝑦′(𝑡) = 𝐾𝑢′(𝑡) 

 

 

 
𝐾  
 

meaning 𝑦̂(𝑠) = 𝐾𝑢̂(𝑠)  
or simply 𝑦̂ = 𝐾𝑢̂ 

 
Integrating, or Accumulating. y 
progressively accumulates u.  
Like flow rate (in gpm) might fill 
a tank and volume (gallons) 
accumulates.  Read it as “y is the 
time-accumulation of u.” 
 
 
 
 
 
 
 

 

𝑦′(𝑠) = ∫ 𝑢′(𝑡′)𝑑𝑡′
𝑡′=∞

𝑡′=0

 

 

 
 

 
1/𝑠   

 

meaning 𝑦̂(𝑠) =
1

𝑠
𝑢̂(𝑠)  

or simply 𝑦̂ =
1

𝑠
𝑢̂ 
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Rate, or Derivative. y is the rate 
of change of u.  Like speed is the 
rate of change of distance or 
acceleration is the rate of 
change of speed.  Read it as “y is 
the time rate of change of u.” 
 
 
 
 
 
 

 

𝑦′(𝑡′) =
𝑑𝑢′(𝑡′)

𝑑𝑡
 

 

 
 

 
𝑠   
 

meaning 𝑦̂(𝑠) = 𝑠𝑢̂(𝑠)  
or simply 𝑦̂ = 𝑠𝑢̂ 

 
Delay, or Deadtime, by an 
amount 𝜃. y does exactly the 
same thing as u, but delayed by 
a time of 𝜃 minutes (or 
seconds). Like the 10 sec delay 
on a broadcast of a live televised 
event.  Read is as “y is the same 
as u, but time-delayed by 
theta.” 
 
 

 
𝑦′(𝑡′) = 𝑢′(𝑡′ − 𝜃) 

 

 
 

 

𝑒−𝜃𝑠  
 

meaning  𝑦̂ = 𝑒−𝜃𝑠𝑢̂ 
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First-Order, or a Lag, with a 
time-constant of 𝜏.  y lags 
behind u in a first-order 
(exponential) manner.  Like car 
speed would rise and 
asymptotically approach a 
steady value when the 
accelerator pedal is changed. If 
u makes a step-and-hold the y-
response settles to the new 
value in about 5 time-constants.  
It gets about 63% through the 
transient when =  𝜏 , and 95% 
when 𝑡 =  3𝜏, and 99% when 
𝑡 =  5𝜏.  Read it as “y is the tau-
lagged response to u.” 
 

 

𝜏
𝑑𝑦′

𝑑𝑡
+ 𝑦′ = 𝑢′ 

 

 

 
1

𝜏𝑠+1
  

 

meaning  𝑦̂ =
𝑢̂

𝜏𝑠+1
  

 
Lead by a time-constant of 𝜏.  y 
leads u.  Like throwing the ball 
in front of a running receiver.  u 
represents the receiver position 
and y the place to aim the ball.  
𝑑𝑢′

𝑑𝑡
 is the runner speed, and 𝜏 is 

the time for the ball to get to 
the target.  Read it as “y is the 
tau-leaded u.” 
 
 
 

 

𝑦′ = 𝜏
𝑑𝑢′

𝑑𝑡
+ 𝑢′ 

 

 
 

 
𝜏𝑠 + 1  

 
meaning 𝑦̂ = (𝜏𝑠 + 1)𝑢̂ 

 
Second-Order, with time-
constant of 𝜏1 and 𝜏2.  A first-
order lag follows a first-order 
lag, and y is the second lagged 
response to u.  A common 
example is two tanks in series.  
The first is being filled, while it 
empties into the second which 
also has an outflow.  Read it as 
“y2 is the tau2 time lagged y1, 
which is the tau1 lagged u.”  
 
 

 

(𝜏1𝜏2)
𝑑2𝑦′

𝑑𝑡2
+ (𝜏1 + 𝜏2)

𝑑𝑦′

𝑑𝑡
+ 𝑦′ = 𝑢′ 

 

 

 
1

(𝜏1𝑠+1)(𝜏2𝑠+1)
  

 
meaning 

  𝑦̂ =
𝑢̂

(𝜏1𝑠+1)(𝜏2𝑠+1)
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If not based on deviation variables with an initial steady-state, the functions in Table 2.1 are a bit more 
complicated.   
 
Table 2.1 is an essential subset of behaviors.  Less frequently you may encounter open loop unstable, 
oscillatory, inverse response, and such.  You can find translation keys, similar to Table 2.1 in many process 
control textbooks. 
 
 
Interpreting Transform Notation 
  
And, how do you read a transfer function?  Recognize that the mathematical representation is algebra.  
Use algebra rules to regroup the terms into recognizable transfer function elements, then use Table 2.1 
to interpret each element, then state the whole.  The objective is not to get the value of the transformed 
variable (which has no physical meaning, which is the fingerprint), the objective is to use the transfer 
function to define the procedure to get the value of the real process variable.  You can manipulate transfer 
functions like algebra, but you don’t do the arithmetic operations on the transfer functions to get the 
desired value.  Here are some examples. 
 
 
Example 2.1 
 
This is a transfer function of an elementary filter.  The input is the noisy process signal, 𝑦, and the output 
is the filtered value 𝑦𝑓.  The transfer function, however, describes the mathematical relation between the 

non-physically-meaningful variables 𝑦̂𝑓 and 𝑦̂.  

 

𝑦̂𝑓 = (
1

𝜏𝑓𝑠+1
) 𝑦̂         (2.3) 

 
Using Table 2.1 𝑦𝑓 is the first-order lagged value of 𝑦 with a time-constant of 𝜏𝑓.  You would get the value 

of 𝑦(𝑡) by your preferred method of solving the differential equation 𝜏
𝑑𝑦′

𝑑𝑡
+ 𝑦′ = 𝑢′.  My preferred 

method is numerical, which Part 4 of this monograph shows. 

 
Example 2.2 
 
This is a Laplace Transfer Function description of the standard PID controller.  How can one translate it to 
describe the 𝑚(𝑡) response to an 𝑒(𝑡) influence? 
 

𝑚̂ = 𝐾 (1 +
1

𝜏𝑖𝑠
+ 𝜏𝑑𝑠) 𝑒̂       (2.4) 

 
Recognize that the mathematical representation is algebra.  First, regroup the terms into recognizable 
elements.  Multiply 𝑒̂ to each term in the parenthesis. 
 

𝑚̂ = 𝐾 (
1

𝜏𝑖

𝑒

𝑠

̂ + (𝜏𝑑𝑠 + 1)𝑒̂) = 𝐾(𝑇̂1 + 𝑇̂2)     (2.5) 

 



Page 17 of 30 
 

The first term, 𝑇̂1 should be recognizable from Table 2.1 as the integral of 𝑒(𝑡) (the accumulation of 𝑒(𝑡), 
note not 𝑒̂) divided by the scale factor (a gain) 𝜏𝑖.  The second term is the leaded 𝑒(𝑡), how far in front to 
target its value (to forecast its 𝜏𝑑 future value) based on the current value of 𝑒(𝑡) (not 𝑒̂) and its rate of 
change.  Then, the sum of the two terms is scaled to get the value of 𝑚′.  Here, the English language 
translation of the Laplace notation is, “𝑚′ is the K-scaled sum of the 𝜏𝑑-leaded and 𝜏𝑖-integrated value of 
𝑒; then 𝑚 = 𝑚′ + 𝑚𝑟𝑒𝑓.”   

 
Again, you do use algebra to solve Equation (2.5).  You do not multiply 𝜏𝑑  times 𝑠 then add 1 to the sum 

then multiply that by the value of 𝑒̂ to get the value for 𝑇̂2.  Physically, the variable 𝑒̂ is meaningless, and 
𝑠 could have any value.  To determine the leaded value of 𝑒, use any method you prefer to take the 
derivative of 𝑒, multiply it by 𝜏𝑑 and add 𝑒 to it.  My preferred method is numerical. 
 
 
Example 2.3 
 
This is one of several possible descriptions of the rate-before-reset, or interactive PID controller. 
 

𝑚̂ = 𝐾 (1 + 𝜏𝑑𝑠 +
1+𝜏𝑑𝑠

𝜏𝑖𝑠
) 𝑒̂       (2.6) 

  
Again, simplify by multiplying each term in the parenthesis by 𝑒̂ 
 

𝑚̂ = 𝐾 ((1 + 𝜏𝑑𝑠)𝑒̂ +
(1+𝜏𝑑𝑠)𝑒̂

𝜏𝑖𝑠
)      (2.7) 

  

Now consider the 
(1+𝜏𝑑𝑠)𝑒̂

𝜏𝑖𝑠
  term.  The numerator is the leaded actuating error, the value 𝑒(𝑡) would have 

if extrapolated 𝜏𝑑 time into the future.  Then the denominator indicates this value should be integrated 

and scaled by 𝜏𝑖.  So, 
(1+𝜏𝑑𝑠)𝑒̂

𝜏𝑖𝑠
 represents the leaded-integrated-scaled actuating error.  Then add this to 

the leaded 𝑒 and scale by K, so that, “𝑚’ is the K-scaled sum of the 𝜏𝑑-leaded actuating error plus the 𝜏𝑑-
leaded, integrated and 𝜏𝑖-scaled actuating error.  Finally, 𝑚 = 𝑚′ + 𝑚𝑟𝑒𝑓.” 

 
 
Example 2.4 
 
Here, we’ll take an English language description and create the Laplace transfer function.  If you describe 
a process as being first-order plus deadtime, it means that the response is the scaled value of the delayed 
and lagged influence deviation.  If 𝑢(𝑡) is the influence, then the deviation is 𝑢′(𝑡′) = 𝑢(𝑡′) −

𝑢(𝑡′ = 0) = 𝑢(𝑡′) − 𝑢𝑟𝑒𝑓.  In Laplace notation the delayed 𝑢 is represented as 𝑢̂𝑑 = 𝑒−𝜃𝑠𝑢̂.  The lagged 

delayed 𝑢 is represented as 𝑢̂𝑙𝑑 =
1

𝜏𝑠+1
𝑢̂𝑑 =

𝑒−𝜃𝑠

𝜏𝑠+1
𝑢̂.  And, finally the response is the scaled lagged delayed 

𝑢, which is 𝑦̂ = 𝑢̂𝑠𝑙𝑑 = 𝐾𝑢̂𝑙𝑑 =
𝐾

𝜏𝑠+1
𝑢̂𝑑 =

𝐾𝑒−𝜃𝑠

𝜏𝑠+1
𝑢̂.  So, the Laplace transform description of a FOPDT 

response is: 
 

𝑦̂ =
𝐾𝑒−𝜃𝑠

𝜏𝑠+1
𝑢̂         (2.8) 
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Summary 
 
For most of us, there is no need to use calculus to derive the Laplace transformed equation, and no need 
to use partial fractions to invert a transform.   Once one learns what the symbols represent, it is as easy 
to state a cause-and-effect relationship in Laplace transfer function notation as in English, or any language 
that you might be accustomed to. 
 
Of course, there has been much value provided to automatic control, by those who have used Laplace 
transform analysis to prove that the integral-mode of a controller can remove steady state offset, to 
generate tuning rules, to discover reset feedback as a method to prevent integral windup, etc.  However, 
once that has been done by one theoretician, the rest of us don’t need to re-do it on a daily basis.  
Undergraduates should know that techniques of process control have a theoretical underpinning, but 
preparation of undergraduates to be able to do the theory is a misdirection of what 99% of them need to 
know in the practice.    
 
So, understand how to read Laplace transfer functions.  Use Table 2.1 as your “Rosetta Stone” translation 
guide. 
 
 

Part 3 Interpreting Block Diagrams of Functions 
 

Introduction 
 
You are familiar with algebraic notation for a sequence of mathematical operations.  Unfortunately, this 
familiarity can be a barrier to reading and presenting Laplace Transfer functions.  For instance, you might 
think that the “+” sign means “add”.   I’ll illustrate block diagram notation and the familiarity traps with 
three examples. 
 
 
Example 3.1 
 
Here is a simple algebraic example.  
 

𝑦 = 3(𝑥 − 1)         (3.1) 
 
In English language, Equation (3.1) means, “Get the value of x, subtract 1 from it, multiply that result by 
3, and that is the value of y.”   
 
Note: This may seem to be a trivial point, but you need to explicitly recognize this issue, because it will 
not be so obvious when interpreting Laplace transforms.  You recognize that the parenthesis is not an 
operation, nor is it part of the symbols.  For instance, “3𝑥” would mean multiply 3 times the value of 𝑥, 
but the “3(𝑥” in Equation (3.1) does not mean multiply 3 times the value of “(“ times the value of 𝑥.  By 
practice, you understand how to execute this procedure and are not confounded by the symbolic 
representation.  The parenthesis is a direction to the order of the execution of operations, and not an 
element in the execution. 
 
We could illustrate this procedure of Equation (3.1) with a block diagram, as in Figure 3.1.  I think that you 
can see that it directs the same procedure as does the equation or as does the English language statement.  
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The circle with the four segments indicates either addition or subtraction, as the signs for this application 
indicate.  The square with the × indicates that the two inputs need to be multiplied. 
 

 
Figure 3.1 – Block Diagram Representation of Equation (3.1) 
 
 
Note: Although the convention for algebraic equations and computer code is to execute the operations 
on the right of the equal sign and then to assign that to the variable on the left; in a block diagram, the 
flow goes from left to right.   
 
Note: The lines in a block diagram represent information flow, and the circles and boxes represent 
operations.  Unfortunately those of us grounded in process flow diagrams, see the shapes as processing 
units and the lines as process flow lines. 
 
 
Example 3.2 
 
The block diagram notation can also be used for differential and integral equations:  For instance: 
 

𝑦 = 𝑎
𝑑𝑢

𝑑𝑡
+ 𝑏𝑢 + 𝑐 ∫ 𝑢𝑑𝑡       (3.2) 

 
Note: There are algebra operations indicated in the equation.  These include multiply the values of 𝑏 and 

𝑢, and the addition and equate operations.  If Equation (3.2) were all algebra, you would consider 
𝑑𝑢

𝑑𝑡
 as a 

fraction, recognize the common 𝑑 coefficients in the numerator and denominator, cancel them, and then 

divide 
𝑢

𝑡
 to evaluate that term.  But, you wouldn’t, because you understand that the 

𝑑𝑢

𝑑𝑡
 symbol means, 

“Take the rate of change of 𝑢”.  It is an operation, it is neither algebra nor arithmetic.  It could be more 

explicitly represented as 
𝑑

𝑑𝑡
(𝑢), which could as easily have been defined by the symbol 𝑟𝑎𝑡𝑒(𝑢).  Not 

strange, considering that we have other functions such as 𝐿𝑛(𝑥), and 𝑠𝑖𝑛(𝜋 + 𝜃).   Here the argument of 
the function is in parenthesis.  When you see 𝑠𝑖𝑛(𝜋 + 𝜃), you know it is not the product of the three 
variables 𝑠, 𝑖, 𝑛, multiplied by the sum of 𝜋 + 𝜃.  However, one unfamiliar with functional representation, 
might want to cancel the 𝑑 in the numerator and denominator, or multiply the 𝑠, 𝑖, 𝑛, and 𝜋 + 𝜃.  I write 
this because I find students who are unfamiliar with Laplace notation will often try to solve for the real 
variable represented by the transform with the algebra indicated in the fingerprint.   
 
The procedure to solve for the value of 𝑦 given the value of 𝑢 in Equation (3.2) could be represented by 
the block diagram notation in Figure 3.2.   

y x 

3 1 

- 
+ × 
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Figure 3.2 – Block Diagram Procedure for Equation (3.2) 
 
 
Note: On the left side of Figure 3.2, the value of 𝑢 goes three ways.  This is not 1/3rd of the value of 𝑢 going 
each way.  Like one person talking to three who are listening, each listener hears 100% of the message.  
Again, the lines represent information, not a conserved material, as it would in a process flow diagram.  
Even if the signal 𝑢 means three people, the signal splitting does not mean that one person went each 
direction.  The concept is that each box is told there are three people. 
 
In the times block (the × operation) I explicitly indicate that the multiplication of the entering signal is by 
the value of 𝑏.  However, I included the multiply-by coefficients 𝑎 and 𝑐 within the blocks that indicate 
“take the derivative” and “integrate”.  Often, the multiplication operation is just illustrated with the 
coefficient in the block.  There are diverse conventions for block diagram structures depending on the 
legacy and training of the individual’s origin.  But, to me what convention one uses is inconsequential.  
Except, you should use the convention preferred by your boss or customer. 
 
Note: The argument of the integral and of the derivative are not explicitly acknowledged, but implicitly 
implied by the signal that enters the box. 
 

Note:  The box containing the 𝑎
𝑑

𝑑𝑡
 label, could have contained this English Language statement, “To 

calculate the value of the output, take the derivative of the input and multiply it by the value of 𝑎.”  The 
function described is not algebra even though it looks like a fraction. 
   
 
Example 3.3 
 
Finally, here is a Laplace transfer function relation representing a PI controller, but with the proportional 
action filtered to temper noise. 
 

× 

b 

𝑎
𝑑

𝑑𝑡
 

𝑐 ∫ _𝑑𝑡 

𝑢 𝑦 
+ 

+ 

+ 
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𝑢̂ = 𝐾 (
1

𝜏𝑓𝑠+1
+

1

𝜏𝑖𝑠
) 𝑒̂        (3.3) 

 
Note: Recall, the values of 𝑢̂ and 𝑒̂ have no physical meaning.  Further, the value of 𝑠 is not specified.  So, 
for the second term in the parenthesis, we do not multiply 𝜏𝑓 times 𝑠 then take its reciprocal and add it 

to the first term.  The 
1

𝜏𝑖𝑠
 pattern represents an operation.  It says, “Integrate the variable and divide by 

tau-i.”  Similar to the 
𝑑𝑢

𝑑𝑡
 operation discussed above, you don’t solve Equation (3.3) by arithmetic 

operations.  You would solve for 𝑢 (not 𝑢̂) by following the procedure outlined in Part 4 of this monograph.   
You would translate Equation (3.3) into English by using Table 2.1.   
 
However, the algebraic form of a Laplace transformed relation, such as Equation (3.3), can be represented 
in a block diagram.   See Figure 3.3. 
 

 
  
Figure 3.3 – Block Diagram Representation of Equation (3.3) – Laplace Transfer Function Notation 
 
 

Again, the operation indicated by the 
1

𝜏𝑓𝑠+1
 in the upper block does not mean multiply 𝜏𝑓 times 𝑠 then 

add that to 1, then take the reciprocal.  It means, “The outgoing value is the 𝜏𝑓-lagged response to the 

incoming value.”  The 
1

𝜏𝑓𝑠+1
 symbol means determine the value of the response, the output, 𝑧, when it is 

governed by this first order relation 𝜏
𝑑

𝑑𝑡
(𝑧) + 𝑧 = 𝑥, where 𝑥 is the influence. 

 
A block diagram of Equation (3.3) could as easily have been indicated in the time domain (or any written 
language).   See Figure 3.4. 
 

𝑒̂ 

1

𝜏𝑓𝑠 + 1
 

1

𝜏𝑖𝑠
 

𝐾 𝑢̂ 
+ 

+ 
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Figure 3.4 – Block Diagram Representation of Equation (3.3) – Mixed English and Calculus Notation 
 
 
Note:  The input is 𝑒, not 𝑒̂, and the output is 𝑢’ not 𝑢̂.   
 
Note: There is no difference in instruction between Figures 3.3 and 3.4.  Both indicate the same 
operations with the same coefficient values. 
 
 

Part 4 Creating Code for Simulators 
(Solving from the Laplace Representation) 

 
 
Introduction 
 
Some people will want to create simulators from Laplace transfer function descriptions of a process and 
controller.  These can be useful to explore what might happen if tuning, filtering, or controller structure 
is changed; or if the process structure or flowrates are changed.  Some may want to create simulators for 
training, or process capability analysis.  I guided my own understanding of control techniques by creating 
simulators to test and explore if what “they” told me was true (for instance does reset feedback really 
prevent windup), and felt that similar investigations by students would help them learn and understand.  
Most people will not be exploring options, but a few will find this fourth, and final, part in the series to be 
a useful guide. 
 
The tables in this fourth part extend the correspondence in Table 2.1 to several representations – Function 
name, Laplace, calculus, finite difference, and computer code.  The finite difference representations 
included here are elementary, simple algebraic numerical method versions of the calculus equation.  
Certainly, one could be more sophisticated in numerical techniques, but I see no need.  Because I 
commonly use Excel and VBA (Visual Basic for Applications) macros, my computer code is a VBA 
representation of the numerical solution.  If you are coding in Fortran, or C, or spreadsheet cells, or any 
other environment, it should be easy for you to translate my VBA code into your language.   
 
Recall that the prime index on a variable means that it is a deviation from a reference value, 𝑦′(𝑡) =
𝑦(𝑡) − 𝑦𝑟𝑒𝑓.  The reference value, 𝑦𝑟𝑒𝑓, is usually, but not necessarily, an initial steady state value.   So, if 

𝑒 

𝜏𝑓-lag 

the 

input 

1

𝜏𝑖
∫ _𝑑𝑡 

Multiply 

 by  𝐾 

𝑢′ 
+ 

+ 
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you calculate the 𝑦′ value, you need to convert it to the process variable (PV) value by using  
𝑦(𝑡) = 𝑦′(𝑡) + 𝑦𝑟𝑒𝑓. 

 
 
Translating Laplace Notation to Executable Code 
 
Table 4.1 – Gain 

 
𝑦̂ = 𝐾𝑢̂ 

 

 
𝑦′(𝑡) = 𝐾𝑢′(𝑡) 

 
𝑦𝑖′ = 𝐾𝑢𝑖′ 

 
                        udev := u - uref 
                        ydev := K * udev 
                        y := ydev + yref 
 

 
In Table 4.1 (and those that follow) the upper left cell contains the Laplace transfer function, with the 
redundant function-of-𝑠 representation omitted.  The upper right cell contains the calculus representation 
with the prime explicitly indicating that these are deviation variables.  Often this will be a differential 
equation, and often called a time-domain relation, because these variables represent those that change 
in time.   With the Gain operation presented in Table 4.1, it is a simple scaling, ratio, or multiplication. 
 
The lower left cell represents the algebraic form of a digital or numerical solution of the time domain 
equation.  I will be using simple numerical methods, which I find fully adequate when the time increment 
in a simulation is adequately small.  Good practice in control is to have 30 (or more) control actions in an 
open loop transient.  This means that the time interval for control is at least about one-tenth of a time-
constant, which permits use of the simple numerical methods of rectangle rule of integration and finite 
difference approximation to the derivative.  The subscript i represents the sampling interval. 
 
Finally, in the lower right cell is the VBA code.  Note that there are two deviation variables, 𝑢’ and 𝑦′.  To 
make sense in the relations of calculating 𝑦 from 𝑢, their reference values (yref and uref) need to 
represent the same steady state case.   
 
Note: You can derive 𝑦𝑟𝑒𝑓 = 𝐾𝑢𝑟𝑒𝑓 from the equation in the upper right of the table, by the definitions 

𝑦′(𝑡) = 𝑦(𝑡) − 𝑦𝑟𝑒𝑓 and 𝑢′(𝑡) = 𝑢(𝑡) − 𝑢𝑟𝑒𝑓.   

 
Note: The equal sign in the code is not an algebraic equality, but indicates an assignment.  The 
convenience of this means that the subscript is often not needed.  There is no need to store or recall the 
past thousands of u- and y-values.  In VBA code the assignment symbol is the equal sign.  I have 
appropriated the VBA code by using the := symbol to explicitly indicate it is an assignment.  Don’t include 
the colon if you are going to run VBA. 
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Table 4.2 – Integrate 

 

𝑦̂ =
𝑢̂

𝑠
 

 

𝑦′(𝑠) = ∫ 𝑢′(𝑡′)𝑑𝑡′
𝑡′=∞

𝑡′=0

 

 

 
𝑦𝑖

′ = 𝑦𝑖−1
′ + ∆𝑡 𝑢𝑖′ 

 
                        udev := u - uref 
                        ydev := ydev + dt * udev 
                        y := ydev + yref 
 

      
In the lower left cell, the numerical, finite difference, solution to the calculus integral uses the rectangle 
rule of integration.  Here, the most recent value of the integral, the ith  value, 𝑦𝑖

′, is calculated by 
incrementally adding the most recent rectangle, ∆𝑡 𝑢𝑖′, to the integral value at the prior y-value, 𝑦𝑖−1

′ .   ∆𝑡 
is the time increment for the simulation, and should less than about 1/10th of any time-constant in the 
simulation.  Typically, because the event is in deviation variables, the integral is initialized at a value of 
zero, 𝑦0

′ = 0. 
 
The subscripts in the numerical representation of the lower left cell might make one think that the code 
must store all of the past values in an array.  However, they are not present in the code in the lower right 
cell.  The advantage of an assignment statement in this calculation is that you do not have to store all of 
the past values.  The new value only needs to be incrementally updated from the recent past value. 
 
As an aside:  In algebraic notation, the equation 𝑥 = 𝑥 + 1 makes no sense.  However, if it is an assignment 
in computer code, the operation indicated by 𝑥 ∶= 𝑥 + 1 means, “Recall the value in the storage location 
called x, add 1 to it, and store that new value in the storage location called x.”  If x starts at zero, each 
execution of the assignment increments it by 1.  The value of x is 0, then 1, then 2, then 3, 4, 5, 6, …  Here 
the initial value for ydev is zero, since y starts at its initial yref value. 
 
 
Table 4.3 – Rate 

 
𝑦̂ = 𝑠𝑢̂ 

 

𝑦′(𝑡′) =
𝑑𝑢′(𝑡′)

𝑑𝑡
 

 

 
𝑦𝑖

′ = (𝑢𝑖
′ − 𝑢𝑖−1

′ )/∆𝑡  
 
                        udev := u - uref 
                        ydev := (udev – udevold) / dt  
                        udevold := udev 
                        y := ydev + yref 
 

 
Again, ∆𝑡 in the finite difference method for the derivative should be less than about 1/10th of any time-
constant in the simulation.  This does require the immediately past value in the calculation; but, not all 
past values need to be stored, just the most recent past value.  In the assignment statement the line 
“udevold := udev” makes the old value available each time the set of lines are executed.  Here, two 
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variables (udev and udevold) need to be initialized with values of zero, since u starts at its uref value and 
at steady state. 
  
 
Table 4.4 – Lag 

 

𝑦̂ =
𝑢̂

𝜏𝑠 + 1
 

 

𝜏
𝑑𝑦′

𝑑𝑡
+ 𝑦′ = 𝑢′ 

 

 
𝑦𝑖+1

′ = (∆𝑡/𝜏)𝑢𝑖
′ + (1 − ∆𝑡/𝜏)𝑦𝑖

′ 
 
        udev := u – uref 
        ydev := (dt/tau)*udev + (1-dt/tau)*ydevold  
        ydevold := ydev 
        y := ydev + yref 
 

 
The finite difference notation in the lower left can be derived by using the traditional forward difference 
approximation to the derivative when the rest of the terms in the differential equation are evaluated at 
the ith time.  This is called an explicit finite difference representation, in which all terms in the calculus 
representation (upper right cell) are evaluated the common time, now.  Validity of the method is 
dependent on ∆𝑡 being less than about 1/10th of any time-constant in the simulation.  There are many 
alternate finite difference solutions (including implicit and semi-implicit), but they all have similar forms, 
and equivalent calculated results if ∆𝑡 < 𝜏/10.  The finite difference representation suggests that past y-
values need to be stored, but only the first past value is needed.  Accordingly, this simplifies the code.  The 
ydevold value should be initialized to zero indicating that the process starts at a steady state at the value 
of yref. 
 
 
Table 4.5 – Second-Order Lag  (sequential first-order lags) 

 

𝑦̂1 =
𝑢̂

𝜏1𝑠 + 1
 

𝑦̂2 =
𝑦̂1

𝜏2𝑠 + 1
 

Or equivalently 

𝑦̂2 =
1

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
𝑢̂ 

 

 

𝜏1

𝑑𝑦′1
𝑑𝑡

+ 𝑦′
1 = 𝑢′ 

𝜏2

𝑑𝑦′2

𝑑𝑡
+ 𝑦′

2 = 𝑦′
1 

 
𝑦2,𝑖+1

′ = (∆𝑡/𝜏2)𝑦1,𝑖
′ + (1 − ∆𝑡/𝜏2)𝑦2,𝑖

′  

𝑦1,𝑖+1
′ = (∆𝑡/𝜏1)𝑢𝑖

′ + (1 − ∆𝑡/𝜏1)𝑦1,𝑖
′  

 

 
 y2dev := (dt/tau2)*ydev1 + (1-dt/tau2)*ydevold2  
 ydevold2 := ydev2 
 y := ydev2 + yref 
 udev := u – uref 
 y1dev := (dt/tau1)*udev + (1-dt/tau1)*ydevold1  
 ydevold2 := ydev2 
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A second-order lag can be modeled in a variety of ways; but usually, it refers to one first-order process 
influencing a subsequent first-order process.  This is what the Laplace and calculus notations indicate.  
Each process has its own time-constant.  You might note that the two processes are presented in reverse 
order in the lower left digital representation.  This is because I am using the explicit finite difference 
numerical method.  Here the subscripts 𝑖 + 1 and 𝑖 on the y terms represent the end and the beginning 
of a time increment.  The new value for 𝑦1

′  does not happen until the end of the time step, what is 
influencing 𝑦2

′  during the time increment ∆𝑡 is the current effluent from process 1, not what it will be at 
the end of ∆𝑡.  Similarly, the change in the second process is calculated in the assignment statements (in 
the lower right cell in the table) prior to the change in the first process.   Again ∆𝑡 should be less than 
1/10th of any time-constant in the simulation.   
 
Note: I have often observed students seeking to intuitively combine several of the computer code 
relations.  Don’t.  These are assignment statements not algebraic relations.    
 
 
Table 4.6 – Delay 

 

𝑦̂ = 𝑒−𝜃𝑠𝑢̂ 

 
𝑦′(𝑡′) = 𝑢′(𝑡′ − 𝜃) 

 

 
𝑦′

𝑖 = 𝑢′𝑖−𝑁 

Where 𝑁 = 𝑅𝑜𝑢𝑛𝑑(
𝜃

∆𝑡
) 

 

 
                  i = i + 1 
                  IF i > N then i = 1 
                  udev(i) = u - uref 
                  j = i+ 1 
                  If j > N then j = 1 
                  ydev = udev(j) 
                  y = ydev + yref 
 

 
The delay is of time duration 𝜃, however this might not be an integer number of simulation time intervals.  

So, the number of time intervals, 𝑁, is calculated as the 
𝜃

∆𝑡
 value rounded to the nearest integer.  Here the 

computer code does use an array of past values, but the array that holds past u-values only needs to be 
N elements in length.  The indices i and j indicate where to place the latest measurement and where to 
find the Nth past measurement (often termed push and pull in computer-talk).  Elements in the udev array 
should be initialized to zero, representing that u is at an initial steady state at the uref value.    
 
 
Example 4.1 
 
If you have a compound transfer function, use algebra to break it into recognizable elements, and then 
write the code for each.  For example, here is a feedforward controller (alternately termed a dynamic 
compensator or decoupler).  
 

𝑦̂ = 𝐾
𝜏1𝑠+1

𝜏2𝑠+1
𝑒−𝜃𝑠𝑢̂       (4.1) 

 
It indicates that 𝑦′(𝑡) is a leaded, lagged, delayed, scaled response to 𝑢′(𝑡).  I would group recognizable 
terms as presented in Table 4.7, but there are many fully acceptable, equivalent ways. 
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Table 4.7 – Solution Decomposition Procedure to Equation (4.1) 

Operation New variable Remaining Operations 

v is the delayed u 𝑣 = 𝑒−𝜃𝑠𝑢̂ 
 

𝑦̂ = 𝐾
𝜏1𝑠 + 1

𝜏2𝑠 + 1
𝑣 

 

w is the scaled v 𝑤̂ = 𝐾𝑣 
 

𝑦̂ =
𝜏1𝑠 + 1

𝜏2𝑠 + 1
𝑤̂ 

 

x is the lagged w 
𝑥 =

1

𝜏2𝑠 + 1
𝑤̂ 

 

𝑦̂ = (𝜏1𝑠 + 1)𝑥 
 

y is the leaded x, which makes it 
the scaled derivative of x added 
to x 

𝑦̂ = 𝜏1𝑠𝑥 + 𝑥 
 

 

 
 
So, taking each operation one at a time, the VBA digital code is: 
 

I = I + 1     ‘increment put counter 

IF I > N then I = 1   ‘reset counter, 𝑁 = 𝑖𝑛𝑡(
𝜃

∆𝑡
+ 0.5)  

u_prime(I) = u(I) – u_ref   ‘calculate u deviation 
J = I + 1     ‘read counter of Nth past value 
IF J > N then J = 1   ‘reset read counter 
v = u_prime(J)    ‘delayed value of influence 
w = K * v    ‘scaled delayed influence 
x = (dt/tau2)*w + (1-dt/tau2)*xold ‘lagged scaled delayed influence 
y_prime = tau1*(x-xold)/dt +x  ‘leaded lagged scaled delayed influence 
xold = x     ‘need to remember old value 
y = y_prime + y_ref   ‘convert deviation back to PV 

 
 
Figure 4.1 illustrates the execution of the code.  The influence makes an ideal step-and-hold and the 
process responds with a gain of 2, delay of 10 s, lead of 60 s and lag of 20 s. 
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Figure 4.1 – The scaled-delayed-lead-lag response to a step-and-hold influence 
 
 
Utility 
 
That was easier than partial fractions!  And now, as Figure 4.2 reveals, the digital code version of the 
solution to the transfer function can respond to any sort of influence pattern.  The influence is the lower 
trace and the response is the upper trend.  With partial fraction inversion of Laplace Transforms to an 
analytical model, an input varying such as this one would make the solution intractable. 
 

 
Figure 4.2 – The scaled-delayed-lead-lag response (upper trend) to a diversity of influence patterns (lower 
trend)  
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Although described by a Laplace transfer function, we did not solve the transfer function to obtain the 
process response to an input.  We translated the Laplace transform notation to executable code, which 
represents the time-domain operation, which is indicated by the transfer function pattern.  If an English 
language instruction would have been, “The process is a 𝜃-delayed, 𝐾-scaled, 𝜏2-lagged, 𝜏1-leaded 
response to the influence” we would have translated it to the same code. 
 
 
Example 4.2  
 
Again, here is the Equation (3.3) Laplace transfer function relation representing a PI controller, but with 
the proportional action filtered to temper noise. 
 

𝑢̂ = 𝐾 (
1

𝜏𝑓𝑠+1
+

1

𝜏𝑓𝑠
) 𝑒̂        (4.2) 

 
Multiply each term in the parenthesis by 𝑒̂ to get familiar transfer functions. 
 

𝑢̂ = 𝐾 (
𝑒̂

𝜏𝑓𝑠+1
+

𝑒̂

𝜏𝑖𝑠
) = 𝐾(𝑇̂1 + 𝑇̂2)      (4.3) 

 
Although Equation (4.3) is in transformed variable notation, it says, “𝑢’ is the 𝐾-scaled sum of Term-1 and 
Term-2.”  It says, “Term-1 is the 𝜏𝑓-lagged actuating error, and that Term-2 is the time integral of the 

actuating error scaled by 𝜏𝑖.”  Finally, 𝑢, will be calculated by 𝑢 = 𝑢’ + 𝑢𝑟𝑒𝑓.  To start 𝑒’ must be calculated.  

Since 𝑒’ = 𝑦𝑆𝑃
′ − 𝑦′ = (𝑦𝑆𝑃 − 𝑦𝑟𝑒𝑓) − (𝑦 − 𝑦𝑟𝑒𝑓) = 𝑦𝑆𝑃 − 𝑦 = 𝑒, just use the actuating error.  

 
So the VBA code is  
 
 e = y_SP – y     ‘calculate actuating error 
 T2 = T2 + e * dt / tau_i    ‘integrate with rectangle rule 
 T1 = (dt / tau_f) * e + (1 - dt / tau_f) * T1 ‘first order lag 
 u_dev = K * (T1 + T2)    ‘sum and scale 
 u = u_def + u_ref    ‘convert to u. 
 
 
Note:  y_SP, T1, T2, and u_ref need to be initialized.  This code represents the P-filtered PI controller that 
would be executed in the AUTO mode.  My preference is to initialize variables in the MAN mode.  Initialize 
y_SP with the current controlled variable value, and u_ref with the current manipulated variable value 
(the controller output).  Initialize T1 and T2 as zero. 
 
Note: This primitive controller code does not reveal the MAN operations, not does it have either an anti-
windup feature, or an override to keep u within physical bounds (ideally 0 to 100%).  
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